Skip to main content

A Novel Foot Progression Angle Detection Method

  • Chapter
  • First Online:
Book cover Computer Vision in Control Systems-4

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 136))

Abstract

Foot Progression Angle (FPA) detection is an important measurement in clinical gait analysis. Currently, the FPA can only be computed, while walking in a laboratory with a marker-based or Initial Measure Unit (IMU) based motion capture systems. A novel Visual Feature Matching (VFM) method is presented here, measuring the FPA by comparing the shoe orientation with the progression, i.e. the walking direction. Both the foot orientation and progression direction are detected by image processing methods in rectified digital images. Differential FPA (DFPA) algorithm is developed to provide accurate FPA measurement. The hardware of this system combines only one wearable sensor, a chest or torso mounted smart phone camera, and a laptop on the same Wi-Fi network. There is no other prerequisite hardware installation or other specialized set up. This method is a solution for long-term gait self-monitoring in a home or community like environments. Our novel approach leads to simple and persistent, real time remote gait FPA monitoring, and it is a core of new bio-feedback medical procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kirtley, C.: Clinical gait analysis: theory and practice. Elsevier Health Sciences (2006)

    Google Scholar 

  2. Huang, Y., Jirattigalachote, W., Cutkosky, M., Zhu, X., Shull, P.: Novel foot progression angle algorithm estimation via foot-worn, magneto-inertial sensing. IEEE Trans. Biomed. Eng. 63(11), 2278–2285 (2016)

    Article  Google Scholar 

  3. Hinman, R.S., Hunt, M.A., Simic, M., Bennell, K.L.: Exercise, gait retraining, footwear and insoles for knee osteoarthritis. Curr. Phys. Med. Rehabil. Rep. 1, 21–28 (2013)

    Article  Google Scholar 

  4. Redd, C.B., Bamberg, S.J.M.: A wireless sensory feedback system for real-time gait modification. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC’2011), pp. 1507–1510 (2011)

    Google Scholar 

  5. Dadashi, F., Mariani, B., Rochat, S., Büla, C.J., Santos-Eggimann, B., Aminian, K.: Gait and foot clearance parameters obtained using shoe-worn inertial sensors in a large-population sample of older adults. Sensors 14(1), 443–457 (2013)

    Article  Google Scholar 

  6. Bennell, K.L., Bowles, K.-A., Wang, Y., Cicuttini, F., Davies-Tuck, M., Hinman, R.S.: Higher dynamic medial knee load predicts greater cartilage loss over 12 months in medial knee osteoarthritis. Ann. Rheum. Dis. 70(10), 1770–1774 (2011)

    Article  Google Scholar 

  7. Shull, P.B., Shultz, R., Silder, A., Dragoo, J.L., Besier, T.F., Cutkosky, M.R., Delp, S.L.: Toe-in gait reduces the first peak knee adduction moment in patients with medial compartment knee osteoarthritis. J. Biomech. 46(1), 122–128 (2013)

    Article  Google Scholar 

  8. Simic, M., Hinman, R.S., Wrigley, T.V., Bennell, K.L., Hunt, M.A.: Gait modification strategies for altering medial knee joint load: a systematic review. Arthritis Care Res. 63(3), 405–426 (2011)

    Google Scholar 

  9. Ferrigno, C., Stoller, I.S., Shakoor, N., Thorp, L.E., Wimmer, M.A.: (2016) The feasibility of using augmented auditory feedback from a pressure detecting insole to reduce the knee adduction moment: a proof of concept study. J. Biomech. Eng. 138(2):Article 021014

    Google Scholar 

  10. Xu, W., Huang, M.C., Amini, N., Liu, J.J., He, L., Sarrafzadeh M.: Smart insole: a wearable system for gait analysis. In: 5th International Conference on Pervasive Technologies Related to Assistive Environments (PETRA’2012), Article No. 18 (2012)

    Google Scholar 

  11. Simic, M., Wrigley, T., Hinman, R.S., Hunt, M., Bennell, K.: Altering foot progression angle in people with medial knee osteoarthritis: the effects of varying toe-in and toe-out angles are mediated by pain and malalignment. Osteoarthr. Cartil. 21(9), 1272–1280 (2013)

    Article  Google Scholar 

  12. Semple, J., Kneebone, G.: Algebraic Projective Geometry. Oxford University Press, Oxford (1979)

    MATH  Google Scholar 

  13. Duane, C.B.: Close-range camera calibration. Photogram. Eng. 37(8), 855–866 (1971)

    Google Scholar 

  14. Faig, W.: Calibration of close-range photogrammetric systems: mathematical formulation. Photogram. Eng. Remote Sens. 41(12), 1479–1486 (1975)

    Google Scholar 

  15. Zhang, Z.: A flexible new technique for camera calibration. Pattern analysis and machine intelligence. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)

    Article  Google Scholar 

  16. Ma, Y., Soatto, S., Kosecka, J., Sastry, S.S.: An invitation to 3-D vision: from images to geometric models. Springer Science & Business Media (2012)

    Google Scholar 

  17. Kitt, B.M., Rehder, J., Chambers, A.D., Schonbein, M., Lategahn, H., Singh, S.: Monocular visual odometry using a planar road model to solve scale ambiguity. In: 5th European Conference on Mobile Robots (ECMR’2011), 43–48 (2011)

    Google Scholar 

  18. Zienkiewicz, J., Davison, A.: Extrinsics autocalibration for dense planar visual odometry. J. Field. Robot. 32(5), 803–825 (2015)

    Article  Google Scholar 

  19. Liebowitz, D., Zisserman, A.: Metric rectification for perspective images of planes. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’1998), 482–488 (1998)

    Google Scholar 

  20. Young, J., Elbanhawi, M., Simic, M.: Developing a navigation system for mobile robots. In: Damiani E., Howlett R.J., Jain L.C., Gallo L., De Pietro G. (eds.) Intelligent Interactive Multimedia Systems and Services, SIST, vol. 40, pp. 289–298. Springer, Berlin (2015)

    Google Scholar 

  21. Ballard, D.H.: Generalizing the hough transform to detect arbitrary shapes. Pattern Recogn. 13(2), 111–122 (1981)

    Article  MATH  Google Scholar 

  22. Johnson, M.K., Farid H.: Metric measurements on a plane from a single image. Department of Computer Science, Dartmouth College, Tech. Rep. TR2006-579 (2006)

    Google Scholar 

  23. Cheng, H.-D., Jiang, X., Sun, Y., Wang, J.: Color image segmentation: advances and prospects. Pattern Recogn. 34(12), 2259–2281 (2001)

    Article  MATH  Google Scholar 

  24. Sural, S., Qian, G., Pramanik S.: Segmentation and histogram generation using the HSV color space for image retrieval. In: IEEE International Conference on Image Process (ICIP’2002), vol. 2, pp. 1–4. (2002)

    Google Scholar 

  25. Juan, L., Gwun, O.: A comparison of SIFT, PCA-SIFT and SURF. Int. J. Image Process 3(4), 143–152 (2009)

    Google Scholar 

  26. Jacobs, L., Weiss, J., Dolan, D.: Object tracking in noisy radar data: comparison of Hough transform and RANSAC. In: IEEE International Conference on Electro/Information Technology (EIT’2013), (2013). doi:10.1109/EIT.2013.6632715

  27. Owings, T.M., Grabiner, M.D.: Step width variability, but not step length variability or step time variability, discriminates gait of healthy young and older adults during treadmill locomotion. J. Biomech. 37(6), 935–938 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffery Young .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Young, J., Simic, M., Simic, M. (2018). A Novel Foot Progression Angle Detection Method. In: Favorskaya, M., Jain, L. (eds) Computer Vision in Control Systems-4. Intelligent Systems Reference Library, vol 136. Springer, Cham. https://doi.org/10.1007/978-3-319-67994-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67994-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67993-8

  • Online ISBN: 978-3-319-67994-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics