Skip to main content

Simple Intuitive Multi-objective ParalLElization of Efficient Global Optimization: SIMPLE-EGO

  • Conference paper
  • First Online:
Advances in Structural and Multidisciplinary Optimization (WCSMO 2017)

Abstract

This paper describes how to parallelize the Efficient Global Optimization (EGO) algorithm, by making use of a simple multi-objective formulation. EGO constructs a Kriging approximation of the cost function, and then improves this approximation by adding additional designs to the initial designs. These aditional designs are added sequentially, one by one. In a specific iteration, the design is added where the Expected Improvement (EI) acquisition function is maximized. The EI function is typically maximized in the vicinity of the current best sampled point, or in a region that has large uncertainty. We demonstrate that instead of using the EI function, a multi-objective formulation can be used to decide where to add points. The two objectives that dictate where new designs should be sampled are function value, and uncertainty. The resulting Pareto front contains multiple designs that can be analyzed in parallel in the next iteration. Our study concludes with numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 649.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Global Optim. 13, 455–492 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Mckay, M.D.: Latin hypercube sampling as a tool in uncertainty analysis of computer models. In: Proceedings of the 24th Conference on Winter Simulation, WSC 1992, pp. 557–564 (1992)

    Google Scholar 

  3. Cressie, N.A.C.: The origins of Kriging. Math. Geol. 22(3), 239–252 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cressie, N.A.C.: Statistics for Spatial Data. Wiley, London (1991)

    MATH  Google Scholar 

  5. Hengl, T.: A Practical Guide to Geostatistical Mapping. University of Amsterdam, Amsterdam (2009)

    Google Scholar 

  6. Martin, J.D., Simpson, T.W.: Use of kriging models to approximate deterministic computer models. AIAA J. 43(4), 853–863 (2005)

    Article  Google Scholar 

  7. Rasmussen, C.E., Williams, K.I.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  8. Stein, M.L.: Interpolation of Spatial Data: Some Theory for Kriging. Springer Series in Statistics. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  9. Matheron, G.: Kriging or polynomial interpolation procedures. CIMM Trans. 70, 240–244 (1967)

    Google Scholar 

  10. Sasena, M.J.: Flexibility and efficiency enhancements for constrained global design optimization with kriging approximations. Ph.D. thesis, University of Michigan (2002)

    Google Scholar 

  11. Feng, Z., Zhang, Q., Zhang, Q., Tang, Q., Yang, T., Ma, Y.: A multiobjective optimization based framework to balance the global exploration and local exploitation in expensive optimization. J. Global Optim. 61, 677–694 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ginsbourger, D., Riche, R., Carraro, L.: A multi-points criterion for deterministic parallel global optimization based on Gaussian processes. HAL (2008)

    Google Scholar 

  13. Bichon, B.J.: Efficient surrogate modeling for reliability analysis and design. Ph.D. thesis, Vanderbilt University (2010)

    Google Scholar 

  14. Schonlau, M.: Computer experiments and global optimization. Ph.D. thesis, University of Waterloo, Waterloo, Ontario, Canada (1997)

    Google Scholar 

  15. Jones, D.R.: A taxonomy of global optimization methods based on response surfaces. J. Glob. Optim. 21, 345–383 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Schonlau, M., Welch, W.J., Jones, D.R.: Global versus local search in constrained optimization of computer models. Technical Report 83, National Institute of Statistical Sciences, 19 T. W. Alexander Drive PO Box 14006 Research Triangle Park, NC 27709-4006, March 1998

    Google Scholar 

  17. Sobester, A., Leary, S.J., Keane, A.J.: A parallel updating scheme for approximating and optimizing high fidelity computer simulations. Struct. Multi. Optim. 27, 371–383 (2004)

    Article  Google Scholar 

  18. Ponweiser, W., Wagner, T., Vincze, M.: Clustered multiple generalized expected improvement: a novel infill sampling criterion for surrogate models. In: IEEE Congress on Evolutionary Computation (2008)

    Google Scholar 

  19. Viana, F.A.C., Haftka, R.T.: Importing uncertainty estimates from one surrogate to another. In: 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (2009)

    Google Scholar 

  20. Viana, F.A.C., Haftka, R.T., Steffen, V.: Multiple surrogates: how cross-validation errors can help us to obtain the best predictor. Struct. Multi. Optim. 39, 439–457 (2009)

    Article  Google Scholar 

  21. Viana, F.A.C., Haftka, R.T., Watson, L.T.: Why not run the efficient global optimization algorithm with multiple surrogates? In: 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (2010)

    Google Scholar 

  22. Viana, F.A.C., Haftka, R.T., Watson, L.T.: Efficient global optimization algorithm assisted by multiple surrogate techniques. J. Global Optim. 56, 669–689 (2013)

    Article  MATH  Google Scholar 

  23. Sobester, A., Leary, S.J., Keane, A.J.: On the design of optimization strategies based on global response surface approximation models. J. Global Optim. 33, 31–59 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Biscani, F., Izzo, D., Yam, C.H.: Parallel global multiobjective optimizer

    Google Scholar 

  25. Surjanovic, S., Bingham, D.: Virtual library of simulation experiments: test functions and datasets (2013). http://www.sfu.ca/ssurjano/hart3.html. Accessed 6 May 2016

  26. Kok, S., Sandrock, C.: Locating and characterizing the stationary points of the extended Rosenbrock function. Evol. Comput. 17(3), 437–453 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Schalk Kok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grobler, C., Kok, S., Wilke, D.N. (2018). Simple Intuitive Multi-objective ParalLElization of Efficient Global Optimization: SIMPLE-EGO. In: Schumacher, A., Vietor, T., Fiebig, S., Bletzinger, KU., Maute, K. (eds) Advances in Structural and Multidisciplinary Optimization. WCSMO 2017. Springer, Cham. https://doi.org/10.1007/978-3-319-67988-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67988-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67987-7

  • Online ISBN: 978-3-319-67988-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics