Rearrangement Scenarios Guided by Chromatin Structure

  • Sylvain Pulicani
  • Pijus Simonaitis
  • Eric Rivals
  • Krister M. SwensonEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10562)


Genome architecture can be drastically modified through a succession of large-scale rearrangements. In the quest to infer these rearrangement scenarios, it is often the case that the parsimony principal alone does not impose enough constraints. In this paper we make an initial effort towards computing scenarios that respect chromosome conformation, by using Hi-C data to guide our computations. We confirm the validity of a model – along with optimization problems Minimum Local Scenario and Minimum Local Parsimonious Scenario – developed in previous work that is based on a partition into equivalence classes of the adjacencies between syntenic blocks. To accomplish this we show that the quality of a clustering of the adjacencies based on Hi-C data is directly correlated to the quality of a rearrangement scenario that we compute between Drosophila melanogaster and Drosophila yakuba. We evaluate a simple greedy strategy to choose the next rearrangement based on Hi-C, and motivate the study of the solution space of Minimum Local Parsimonious Scenario.


Genome rearrangement Double cut and join DCJ Hi-C Chromatin conformation 



The authors would like to thank the reviewers for their helpful comments. Sylvain PULICANI is funded by NUMEV grant AAP 2014-2-028 and EPIGENMED grant ANR-10-LABX-12-01. This work is partially supported by the IBC (Institut de Biologie Computationnelle) (ANR-11-BINF-0002) and by the Labex NUMEV flaship project GEM.


  1. 1.
    Altenhoff, A.M., Škunca, N., Glover, N., Train, C.-M., Sueki, A., Piližota, I., Gori, K., Tomiczek, B., Müller, S., Redestig, H., et al.: The OMA orthology database in 2015: function predictions, better plant support, synteny view and other improvements. Nucleic acids research, p. gku1158 (2014)Google Scholar
  2. 2.
    Bergeron, A., Mixtacki, J., Stoye, J.: A unifying view of genome rearrangements. In: Bücher, P., Moret, B.M.E. (eds.) WABI 2006. LNCS, vol. 4175, pp. 163–173. Springer, Heidelberg (2006). doi: 10.1007/11851561_16 CrossRefGoogle Scholar
  3. 3.
    Campbell, P.J., Stephens, P.J., Pleasance, E.D., O’Meara, S., Li, H., Santarius, T., Stebbings, L.A., Leroy, C., Edkins, S., Hardy, C., et al.: Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nat. Genet. 40(6), 722–729 (2008)CrossRefGoogle Scholar
  4. 4.
    Chambers, E.V., Bickmore, W.A., Semple, C.A.: Divergence of mammalian higher order chromatin structure is associated with developmental Loci. PLoS Comput. Biol. 9(4), e1003017 (2013)CrossRefGoogle Scholar
  5. 5.
    Chauve, C., Gavranovic, H., Ouangraoua, A., Tannier, E.: Yeast ancestral genome reconstructions: the possibilities of computational methods II. J. Comput. Biol. 17(9), 1097–1112 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chinwalla, A.T., Cook, L.L., Delehaunty, K.D., Fewell, G.A., Fulton, L.A., Fulton, R.S., Graves, T.A., Hillier, L.D.W., Mardis, E.R., McPherson, J.D., et al.: Initial sequencing and comparative analysis of the mouse genome. Nature 420(6915), 520–562 (2002)CrossRefGoogle Scholar
  7. 7.
    Ghiurcuta, C.G., Moret, B.M.E.: Evaluating synteny for improved comparative studies. Bioinformatics 30(12), i9–i18 (2014)CrossRefGoogle Scholar
  8. 8.
    Lieberman-Aiden, E., van Berkum, N.L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B.R., Sabo, P.J., Dorschner, M.O., Sandstrom, R., Bernstein, B., Bender, M.A., Groudine, M., Gnirke, A., Stamatoyannopoulos, J., Mirny, L.A., Lander, E.S., Dekker, J.: Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950), 289–293 (2009)CrossRefGoogle Scholar
  9. 9.
    Park, H.-S., Jun, C.-H.: A simple and fast algorithm for k-medoids clustering. Expert Syst. Appl. 36(2, Part 2), 3336–3341 (2009)CrossRefGoogle Scholar
  10. 10.
    Sexton, T., Yaffe, E., Kenigsberg, E., Bantignies, F., Leblanc, B., Hoichman, M., Parrinello, H., Tanay, A., Cavalli, G.: Three-dimensional folding and functional organization principles of the drosophila genome. Cell 148(3), 458–472 (2012)CrossRefGoogle Scholar
  11. 11.
    Simonaitis, P., Swenson, K.M.: Finding Local Genome Rearrangements. Springer, Heidelberg (2017)Google Scholar
  12. 12.
    Swenson, K.M., Simonaitis, P., Blanchette, M.: Models and algorithms for genome rearrangement with positional constraints. Algorithms Mol. Biol. 11(1), 13 (2016)CrossRefGoogle Scholar
  13. 13.
    Véron, A.S., Lemaitre, C., Gautier, C., Lacroix, V., Sagot, M.-F.: Close 3D proximity of evolutionary breakpoints argues for the notion of spatial synteny. BMC Genom. 12(1), 303 (2011)CrossRefGoogle Scholar
  14. 14.
    Yaffe, E., Tanay, A.: Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture. Nat. Genet. 43(11), 1059–1065 (2011)CrossRefGoogle Scholar
  15. 15.
    Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21(16), 3340–3346 (2005)CrossRefGoogle Scholar
  16. 16.
    Zeng, X., Nesbitt, M.J., Pei, J., Wang, K., Vergara, I.A., Chen, N.: Orthocluster: a new tool for mining synteny blocks and applications in comparative genomics. In: Proceedings of the 11th International Conference on Extending database technology: Advances in Database Technology, pp. 656–667. ACM (2008)Google Scholar
  17. 17.
    Zhang, Y., McCord, R.P., Ho, Y.-J., Lajoie, B.R., Hildebrand, D.G., Simon, A.C., Becker, M.S., Alt, F.W., Dekker, J.: Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell 148(5), 908–921 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Sylvain Pulicani
    • 1
    • 4
  • Pijus Simonaitis
    • 2
  • Eric Rivals
    • 1
    • 3
  • Krister M. Swenson
    • 1
    • 3
    Email author
  1. 1.LIRMM, CNRS – Université MontpellierMontpellierFrance
  2. 2.ENS LyonLyonFrance
  3. 3.Institut de Biologie Computationnelle (IBC)MontpellierFrance
  4. 4.Institut de Génétique Humaine (IGH)MontpellierFrance

Personalised recommendations