Advertisement

A Model for an Emotional Respondent Robot

  • Ayşe E. SancarEmail author
  • Elena Battini Sönmez
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 678)

Abstract

The aim of this study is to design an emotional regulation model based on facial expressions. It is argued that emotions serve a critical function in intelligent behavior and some researchers posed the questions of whether a robot could be intelligent without emotions. As a result, emotion recognition and adequate reaction are essential requirements for enhancing the quality of human robot interaction. This study proposes a computational model of emotion capable of clustering the perceived facial expression, and using cognitive reappraisal to switch its internal state so as to give a human-like reaction over the time. That is, the agent learns the person’s facial expression by using Self Organizing Map, and gives it a meaning by mapping the perceived expression into its internal state diagram. As a result, the presented model implements empathy with the aim to enhance human-robot communication.

References

  1. 1.
    Kozima, H., Nakagawa, C., Yasuda, Y.: Children-robot interaction: a pilot study in autism therapy. In: Progress in Brain Research, pp. 385–400 (2007)Google Scholar
  2. 2.
    Robins, B., Dautenhahn, K., Boekhorst, R.T., et al.: Robotic assistants in therapy and education of children with autism: can a small humanoid robot help encourage social interaction skills? Univ. Access Inf. Soc. 4(2), 105–120 (2005)CrossRefGoogle Scholar
  3. 3.
    Jayawardena, C., Kuo, I.H., Unger, U., et al.: Deployment of a service robot to help older people. In: IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, pp. 5990–5995 (2010)Google Scholar
  4. 4.
    Breazeal, C.: Emotion and sociable humanoid robots. Int. J. Hum. Comput. Stud. 59, 119–155 (2003). doi: 10.1016/S1071-5819(03)00018-1 CrossRefGoogle Scholar
  5. 5.
    Arkin, R., Fujita, M., Takagi, T., et al.: An ethological and emotional basis for human robot interaction. Robot. Auton. Syst. 42, 191–201 (2003)CrossRefzbMATHGoogle Scholar
  6. 6.
    Esau, N., Kleinjohann, L., Kleinjohann, B.: Integration of emotional reactions on human facial expressions into the robot head MEXI. In: IEEE International Conference on Intelligent Robots and Systems, pp. 534–541 (2007)Google Scholar
  7. 7.
    Marsella, S., Gratch, J.: A domain-independent framework for modeling emotion. J. Cogn. Syst. Res. 5(4), 296–306 (2003)Google Scholar
  8. 8.
    Miwa, H., Itoh, K., Matsumoto, M., et al.: effective emotional expressions with emotion expression humanoid robot WE-4RII. In: IEEE/RSJ International Conference on Intelligent Robot and Systems, pp. 2203–2208 (2004)Google Scholar
  9. 9.
    Hirth, J., Schmitz, N., Berns, K.: Emotional architecture for the humanoid robot head ROMAN. In: IEEE International Conference on Robotics and Automation, pp. 2150–2155 (2007)Google Scholar
  10. 10.
    Watanabe, A., Ogino, M., Asada, M.: Mapping facial expression to internal states based on intuitive parenting. J Robot. Mechatron. 19(3), 315–323 (2007)CrossRefGoogle Scholar
  11. 11.
    Hashimoto, M., Yamano, M., Usui, T.: Effects of emotional synchronization in human-robot KANSEI communications. In: IEEE International Workshop on Robot and Human Interactive Communication, pp. 52–57 (2009)Google Scholar
  12. 12.
    Lim, A., Okuno, H.G.: Developing robot emotions through interaction with caregivers. In: Vallverdú, J. (ed.) Handbook of Research on Synthesizing Human Emotion in Intelligent Systems and Robotics, pp. 316–337 (2014). doi: 10.4018/978-1-4666-7278-9.ch015
  13. 13.
    Asada, M., MacDorman, K.F., Ishiguro, H., Kuniyoshi, Y.: Cognitive developmental robotics as a new paradigm for the design of humanoid robots. Robot. Auton. Syst. 37, 185–193 (2001)CrossRefzbMATHGoogle Scholar
  14. 14.
    Ekman, P.: Methods for measuring facial action. In: Scherer, K.R., Ekman, P. (eds.) Handbook of Methods in Nonverbal Behavior Research. Cambridge University Press, New York (1982)Google Scholar
  15. 15.
    Mehrabian, A., Russell, J.A.: An Approach to Environmental Psychology. MIT, Cambridge (1974)Google Scholar
  16. 16.
    Scherer, K., Schorr, A., Johnstone, T.: Appraisal Processes in Emotion: Theory, Methods, Research. Oxford University Press, Oxford (2001)Google Scholar
  17. 17.
    Smith, C.A., Lazarus, R.S.: Emotion and adaptation. In: John, O., Robins, R., Pervin, L. (eds.) Handbook of Personality: Theory and Research, pp. 609–637. Oxford University Press, Oxford (1991)Google Scholar
  18. 18.
    Plutchik, R.: The Emotions. University Press of America, Lanham (1991)Google Scholar
  19. 19.
    Russell, J.A., Mehrabian, A.: Evidence for a three-factor theory of emotions. J. Res. Pers. 11(3), 273–294 (1977). doi: 10.1016/0092-6566(77)90037-X CrossRefGoogle Scholar
  20. 20.
    Bosse, T., Pontier, M., Treur, J.: A dynamical system modelling approach to Gross’ model of emotion regulation. In: ICCM 2007: International Conference on Cognitive Modeling. Taylor & Francis/Psychology Press, Oxford (2007)Google Scholar
  21. 21.
    Gross, J.: Emotion regulation: affective, cognitive, and social consequences. Psychophysiology 39, 281–291 (2002). doi: 10.1017/S0048577201393198 CrossRefGoogle Scholar
  22. 22.
    Russel, J.A.: Reading emotions from and into faces: resurrecting a dimensional-contextual perspective. In: Russel, J.A., Fernandez-Dols, J.M. (eds.) The psychology of facial expression, pp. 295–320. Cambride University Press, New York (1997)CrossRefGoogle Scholar
  23. 23.
    Panayiotou, G.: Emotional dimensions reflected in ratings of affective scripts. Pers. Individ. Differ. 44(8), 1795–1806 (2008)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Bakker, I., Van der Voordt, T.J.M., Vink, P., de Boon, J.: Pleasure, arousal, dominance: Mehrabian and Russell revisited. Curr. Psychol. 33(3), 405–421 (2014). doi: 10.1007/s12144-014-9219-4 CrossRefGoogle Scholar
  25. 25.
    Plutchik, R.: Emotion: A Psychoevolutionary Synthesis. Harper & Row, New York (1980)Google Scholar
  26. 26.
    Lucey, P., Cohn, J.F., Kanade, T., Saragih, J., Ambadar, Z., Matthews, I.: The extended Cohn-Kanade dataset (CK+): a complete dataset for action unit and emotion specified expression. In: IEEE Workshop on CVPR for Human Communicative Behaviour Analysis (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Psychology and Department of Computer EngineeringIstanbul Bilgi UniversityIstanbulTurkey
  2. 2.Department of Computer EngineeringIstanbul Bilgi UniversityIstanbulTurkey

Personalised recommendations