Evidence-Aware Mobile Cloud Architectures

  • Huber Flores
  • Vassilis Kostakos
  • Sasu Tarkoma
  • Pan Hui
  • Yong Li
Chapter
Part of the Lecture Notes on Data Engineering and Communications Technologies book series (LNDECT, volume 10)

Abstract

The potential of mobile offloading has contributed towards the flurry of recent research activity known as mobile cloud computing. By instrumenting the mobile applications with offloading mechanisms, a mobile device can save its energy and increase its performance. However, existing offloading mechanisms lack from efficient decision models for augmenting the mobile device with cloud resources on the fly. This problem is caused by the large amount of system’s parameters and their scattered values that need to be considered and characterized merely by the device depending on its contextual needs. Thus, the offloading process still suffers from deficiencies that do not allow a device to maximize the advantages of going cloud-aware. In this chapter, we explore the challenges and opportunities of a new kind of mobile architecture, namely evidence-aware mobile cloud architecture, which relies on crowdsensing to diagnose the optimal configuration for migrating mobile functionality to cloud. The key insight is that by using the massive parallel infrastructure of the cloud to process big data, it is possible to collect offloading evidence from large amount of devices that is later analyzed in conjunction to infer an efficient configuration to execute a smartphone app for a particular device.

References

  1. 1.
    Flores, H.: Service-Oriented and Evidence-aware Mobile Cloud Computing. University of Tartu, Ph.D. thesis (2015)Google Scholar
  2. 2.
    Olteanu, A., Ţăpuş, N.: Offloading for Mobile Devices: A Survey, UPB Scientific Bulletin (2014)Google Scholar
  3. 3.
    Fernando, N., Loke, S.W., Rahayu, W.: Mobile cloud computing: a survey. Fut. Gen. computer systems, 29, 1, 84 (2013)Google Scholar
  4. 4.
    Flores, H., Srirama, S.N.: Mobile cloud middleware. J. Syst. Soft. 92, 82–94 (2014)CrossRefGoogle Scholar
  5. 5.
    Flores, H., Srirama, S.N., Paniagua, C.: A generic middleware framework for handling process intensive hybrid cloud services from mobiles. In: Proceedings of the ACM International Conference on Advances in Mobile Computing and Multimedia (MoMM 2011), (Ho chi minh, Vietnam), Dec 5–7 (2011)Google Scholar
  6. 6.
    Mazzucco, M., Dumas, M.: Achieving performance and availability guarantees with spot instances. In: Proceedings of the IEEE International Conference on High Performance Computing and Communications (HPCC 2011), (Banff, Canada), September 2–4 (2011)Google Scholar
  7. 7.
    Han, B., Hui, P., Kumar, V.A., Marathe, M.V., Shao, J., Srinivasan, A.: Mobile data offloading through opportunistic communications and social participation, IEEE Trans. Mobile Comput. 11, 5, 821 (2012)Google Scholar
  8. 8.
    Kaya, M., et al.: An adaptive mobile cloud computing framework using a call graph based model. J. Netw. Comput. Appl. 65, 12–35 (2016)CrossRefGoogle Scholar
  9. 9.
    Gu, X., Nahrstedt, K., Messer, A., Greenberg, I., Milojicic, D.: Adaptive offloading for pervasive computing. IEEE Perv. Comput. Mag. 3(3), 66–74 (2004)CrossRefGoogle Scholar
  10. 10.
    Kumar, K., Lu, Y.-H.: Cloud computing for mobile users: can offloading computation save energy? Comput. Mag. 43(4), 51–56 (2010)CrossRefGoogle Scholar
  11. 11.
    Cuervo, E., Balasubramanian, A., Cho, D.-k., Wolman, A.S., Saroiu, Chandra, R., Bahl, P. : Maui: making smartphones last longer with code offload. In: Proceedings of the ACM International Conference on Mobile Systems, Applications, and Services (MobiSys 2010), (San Francisco, CA, USA), June 15–18 (2010)Google Scholar
  12. 12.
    Chun, B.-G., Ihm, S., Maniatis, P., Naik, M., Patti, A.: Clonecloud: elastic execution between mobile device and cloud. In: Proceedings of the ACM European Conference on Computer Systems (EuroSys 2011), (Salzburg, Austria), April 10–13 (2011)Google Scholar
  13. 13.
    Kosta, S., Aucinas, A., Hui, P., Mortier, R., Zhang, X.: Thinkair: dynamic resource allocation and parallel execution in the cloud for mobile code offloading. In: Proceedings of the IEEE International Conference on Computer Communications (INFOCOM 2012), (Orlando, Florida, USA.), March 25–30 (2012)Google Scholar
  14. 14.
    Flores, H., Srirama, S.: Adaptive code offloading for mobile cloud applications: exploiting fuzzy sets and evidence-based learning. In: Proceedings of ACM MobiSys Workshop 2013, (Taipei, Taiwan), June 25–28 (2013)Google Scholar
  15. 15.
    Gordon, M.S., Jamshidi, D.A., S. Mahlke, Z. M. Mao, and X. Chen, comet: code offload by migrating execution transparently. In: Proceedings of USENIX Annual Technical Conference (ATC 2012) (Boston, MA, USA), June 13–15, (2012)Google Scholar
  16. 16.
    Shi, C., Habak, K., Pandurangan, P., Ammar, M., Naik, M., E. Zegura: Cosmos: computation offloading as a service for mobile devices, In: Proceedings of the ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc 2014) (Philadelphia, PA, USA), August 11–14 (2014)Google Scholar
  17. 17.
    Flores, H., Hui, P., Tarkoma, S., Li, Y., Srirama, S., Buyya, R.: Mobile Code Offloading: From Concept to Practice and Beyond. IEEE Communications Magazine 53(3), 80–88 (2015)CrossRefGoogle Scholar
  18. 18.
    Verbelen, T., Simoens, P., De Turck, F., Dhoedt, B.: Cloudlets: Bringing the Cloud to the Mobile User, in Proceedings ACM MobiSys Workshop 2012, (Low Wood Bay, Lake District, United Kingdom), June 25–29 (2012)Google Scholar
  19. 19.
    Bahl, P., Han, R.Y., Li, L.E., Satyanarayanan, M.: Advancing the state of mobile cloud computing. In: Proceedings of ACM MobiSys Workshop 2012 (LowWood Bay, Lake District, United Kingdom), June 25–29 (2012)Google Scholar
  20. 20.
    Flores, H., Srirama, S.: Mobile code offloading: should it be a local decision or global inference? In: Proceedings of the ACM International Conference on Mobile Systems, Applications, and Services (MobiSys 2013), (Taipei, Taiwan), June 25–28 (2013)Google Scholar
  21. 21.
    Flores, H., Sharma, R., Ferreira, D., Kostakos, V., Manner, J., Tarkoma, S., Hui, P., Li, Y., Manner, J.: Modeling mobile code acceleration in the cloud. In: Proceedings of IEEE International Conference on Distributed Computing Systems (ICDCS 2017), (Atlanta, GA, USA), June 5–8 (2017)Google Scholar
  22. 22.
    Skourletopoulos, G., Mavromoustakis, C.X., Mastorakis, G., Batalla, J.M., Pallis, E., Kormentzas, G.: Quantifying and evaluating the technical debt on mobile cloud-based service level. In: Proceedings of the IEEE International Conference on Communications (ICC 2016), (Kuala Lumpur, Malaysia), May 23–27 (2016)Google Scholar
  23. 23.
    Skourletopoulos, G., Mavromoustakis, C.X., Mastorakis, G., Batalla, J. M., Dobre, C., Panagiotakis, S., Pallis, E.: Big data and cloud computing: a survey of the state-of-the-art and research challenges. In: Advances in Mobile Cloud Computing and Big Data in the 5G Era, pp. 23–41 (2017)Google Scholar
  24. 24.
    Paniagua, C., et al.: Mobile Sensor Data Classification for Human Activity Recognition using MapReduce on Cloud. Procedia Comp. Sci. 10, 585–592 (2012)CrossRefGoogle Scholar
  25. 25.
    Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The case for VM-based cloudlets in mobile computing. IEEE Pervas. Comput. Mag. 8, 4, 14–23 (2009). Evidence-aware Mobile Cloud Architectures 19Google Scholar
  26. 26.
    Ra, M.R., Sheth, A., Mummert, L., Pillai, P., Wetherall, D., Govindan, R.: Odessa: enabling interactive perception applications on mobile devices. In: Proceedings of the ACM International Conference on Mobile Systems, Applications, and Services (MobiSys 2011), (Washington, DC, USA), June 28– July 1, 2011Google Scholar
  27. 27.
    Saarinen, A., Siekkinen, M., Xiao, Y., Nurminen, J.K., Kemppainen, M., Hui, P.: Smart-diet: offloading popular apps to save energy. ACM SIGCOMM Comput. Commun. Rev. 42(4), 297–298 (2012)CrossRefGoogle Scholar
  28. 28.
    Flores, H., Sharma, R., Ferreira, D., Kostakos, V., Manner, J., Tarkoma, S., Hui, P., Li, Y.: Social-aware hybrid mobile offloading. Pervas. Mobile Comput. J. 36, 25–43 (2017)CrossRefGoogle Scholar
  29. 29.
    Barbera, M.V., Kosta, S., Mei, A., Perta, V.C., Stefa, J.: Mobile offloading in the wild: findings and lessons learned through a real-life experiment with a new cloud-aware system. In: Proceedings of the IEEE International Conference on Computer Communications (INFOCOM 2014), (Toronto, Canada), April 27–May 2 (2014)Google Scholar
  30. 30.
    Flores, H., Sharma, R., Ferreira, D., Kostakos, V., Manner, J., Tarkoma, S., Hui, P., Li, Y.: Social-aware device-to-device communication: a contribution for edge and fog computing? In: Proceedings of the ACM International Joint Conference on Pervasive And Ubiquitous Computing (UbiComp 2016): Adjunct, (Heidelberg, Germany), September 12–16 (2016)Google Scholar
  31. 31.
    Oliner, A.J., Iyer, A.P., Stoica, I., Lagerspetz, E., Tarkoma, S.: Carat: collaborative energy diagnosis for mobile devices. In: Proceedings of the ACM Conference on Embedded Networked Sensor (Systems 2013), (Rome, Italy), November 11–14 (2013)Google Scholar
  32. 32.
    Kchaou, H., Kechaou, Z., Alimi, A.M.: Towards an offloading framework based on big data analytics in mobile cloud computing environments. Procedia Comp. Sci. 53, 292–297 (2016)CrossRefGoogle Scholar
  33. 33.
    Chen, G., Kang, B.T., Kandemir, M., Vijaykrishnan, N., Irwin, M.J., Chandramouli, R.: Studying energy trade offs in offloading computation/compilation in java-enabled mobile devices. IEEE Trans. Parallel Dist. Syst. 15(9), 795–809 (2004)CrossRefGoogle Scholar
  34. 34.
    Miettinen, A., Nurminen, J.K.: Energy efficiency of mobile clients in cloud computing. In: Proceedings of the USENIXWorkshop on Hot Topics in Cloud Computing (HotCloud 2010), (Boston, MA, USA), June 22–25 (2010)Google Scholar
  35. 35.
    Flores, H., Srirama, S.N.: Dynamic Re-configuration of mobile cloud middleware based on traffic. In: Proceedings of the IEEE International Conference on Mobile Ad hoc and Sensor Systems (MASS 2012), (Las Vegas, Nevada, USA), October 8–11 (2012)Google Scholar
  36. 36.
    Flores, H., Su, X., Kostakos, V., Yi Ding, A., Nurmi, P., Tarkoma, S., Hui, P., Li, Y.: Largescale offloading in the internet of things. In: Proceedings of the IEEE Annual International Conference on Pervasive Computing and Communications (PerCom 2017): Adjunct, (Kona, Big Island, Hawaii, USA), March 13–17 (2017)Google Scholar
  37. 37.
    Balachandran, A., Aggarwal, V., Halepovic, E., Pang, J., Seshan, S., Venkataraman, S., Yan, H.: Modeling web quality-of-experience on cellular networks. In: Proceedings of the Annual ACM International Conference on Mobile Computing and Networking (MobiCom 2014), (Maui, Hawaii, USA), September 7–11 (2014)Google Scholar
  38. 38.
    Satyanarayanan, M., Narayanan, D.: Multi-fidelity algorithms for interactive mobile applications. Wireless Netw. J. 7(6), 601–607 (2001)CrossRefMATHGoogle Scholar
  39. 39.
    Kristensen, M., Bouvin, N.O.: Scheduling and development support in the scavenger cyber-foraging system. Pervas. Mobile Comput. J. 6(6), 677–692 (2010)CrossRefGoogle Scholar
  40. 40.
    Nawrocki, P., Reszelewski, W.: Resource usage optimization in mobile cloud computing. Comput, Commun (2016)Google Scholar
  41. 41.
    Silva, F.A., et al.: Mobile cloud face recognition based on smart cloud ranking. Computing. 1–25 (2016)Google Scholar
  42. 42.
    Schafer, D., et al.: Tasklets: better than best-effort computing. In: Proceedings of IEEE International Conference on Computer Communications and Networks (ICCCN 2016), (Waikoloa, Hawaii, USA), August 1–4, (2016)Google Scholar
  43. 43.
    Kwon, Y., et al.: Mantis: efficient predictions of execution time, energy usage, memory usage and network usage on smart mobile devices. IEEE Trans. Mobile Comput. 14(10), 2059–2072 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Huber Flores
    • 1
  • Vassilis Kostakos
    • 1
  • Sasu Tarkoma
    • 2
  • Pan Hui
    • 3
  • Yong Li
    • 4
  1. 1.Center of Ubiquitious ComputingUniversity of OuluOuluFinland
  2. 2.Department of Computer ScienceUniversity of HelsinkiHelsinkiFinland
  3. 3.Department of Computer Science and EngineeringThe Hong Kong University of Science and TechnologyKowloonHong Kong
  4. 4.Department of Electronic EngineeringTsinghua UniversityBeijingChina

Personalised recommendations