Skip to main content

Mobility as the Main Enabler of Opportunistic Data Dissemination in Urban Scenarios

  • Conference paper
  • First Online:
Ad-hoc, Mobile, and Wireless Networks (ADHOC-NOW 2017)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 10517))

Included in the following conference series:

Abstract

The use of opportunistic communications to disseminate common interest messages in an urban scenario have various applications, like sharing traffic status, advertising shop offers, spread alarms, and so on. In this paper, we evaluate the combined use of fixed and mobile nodes to establish an optimal urban opportunistic network aimed at the distribution of general interest data.

Our results not only contradict current assumptions about the combination of fixed and mobile nodes, but also provide interesting general-purpose observations about the dynamics of opportunistic networks. First of all, we found that mobility is not the hindering and challenging property of these networks, but probably their main enabler. Moreover, we determined that if we want to increase the performance of opportunistic networks by increasing the node density, we should increase the number of mobile and not the fixed nodes since adding fixed nodes only increases the overhead.

Finally, our evaluation approach goes beyond the state of the art and is based on using two different simulators, the ONE and OMNeT++, and two different mobility traces from cities with different structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Conti, M., Giordano, S.: Mobile ad hoc networking: milestones, challenges, and new research directions. IEEE Commun. Mag. 52(1), 85–96 (2014)

    Google Scholar 

  2. Poonguzharselvi, B., Vetriselvi, V.: Survey on routing algorithms in opportunistic networks. In: 2013 International Conference on Computer Communication and Informatics, ICCCI 2013 (2013)

    Google Scholar 

  3. Khilar, P.M., Bhoi, S.K.: Vehicular communication: a survey. IET Netw. 3(3), 204–217 (2014)

    Article  Google Scholar 

  4. Al-Sultan, S., Al-Doori, M.M., Al-Bayatti, A.H., Zedan, H.: A comprehensive survey on vehicular ad hoc network. J. Netw. Comput. Appl. 37(1), 380–392 (2014)

    Article  Google Scholar 

  5. Vegni, A.M., Campolo, C., Molinaro, A., Little, T.D.C.: Modeling of intermittent connectivity in opportunistic networks: the case of vehicular ad hoc networks. In: Woungang, I., Dhurandher, S., Anpalagan, A., Vasilakos, A. (eds.) Routing in Opportunistic Networks. Springer, New York (2013)

    Google Scholar 

  6. Thakur, G.S., Kumar, U., Helmy, A., Hsu, W.-J.: On the efficacy of mobility modeling for DTN evaluation: analysis of encounter statistics and spatio-temporal preferences. In: 2011 7th International Wireless Communications and Mobile Computing Conference (IWCMC), Istanbul, Turkey, pp. 510–515 (2011)

    Google Scholar 

  7. Dias, J.A., Rodrigues, J.J., Zhou, L.: Cooperation advances on vehicular communications: a survey. Veh. Commun. 1(1), 22–32 (2014)

    Article  Google Scholar 

  8. Martín-Campillo, A., Crowcroft, J., Yoneki, E., Martí, R.: Evaluating opportunistic networks in disaster scenarios. J. Netw. Comput. Appl. 36, 870–880 (2013)

    Article  Google Scholar 

  9. Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A.: CRAWDAD dataset roma/taxi (2014). Accessed 17 July 2014

    Google Scholar 

  10. Piorkowski, M., Sarafijanovic-Djukic, N., Grossglauser, M.: CRAWDAD dataset epfl/mobility (2009). Accessed 24 Feb 2009

    Google Scholar 

  11. Keränen, A., Ott, J., Kärkkäinen, T.: The ONE simulator for DTN protocol evaluation. In: Proceedings of the Second International ICST Conference on Simulation Tools and Techniques, Rome, Italy (2009)

    Google Scholar 

  12. Natalizio, E., Loscrí, V.: Controlled mobility in mobile sensor networks: advantages, issues and challenges. Telecommun. Syst. 52(4), 2411–2418 (2013)

    Article  Google Scholar 

  13. Neena, V.V., Rajam, V.M.A.: Performance analysis of epidemic routing protocol for opportunistic networks in different mobility patterns. In: 2013 International Conference on Computer Communication and Informatics, Coimbatore, India, pp. 1–5 (2013)

    Google Scholar 

  14. Hernández-Orallo, E., Herrera-Tapia, J., Cano, J.-C., Calafate, C.T., Manzoni, P.: Evaluating the impact of data transfer time in contact-based messaging applications. IEEE Commun. Lett. 19, 1814–1817 (2015)

    Article  Google Scholar 

  15. de Abreu, C.S., Salles, R.M.: Modeling message diffusion in epidemical DTN. Ad Hoc Netw. 16, 197–209 (2014). Benidorm, Spain

    Google Scholar 

  16. Zhang, Y., Zhao, J.: Social network analysis on data diffusion in delay tolerant networks. In: Proceedings of the Tenth ACM International Symposium on Mobile Ad Hoc Networking and Computing - MobiHoc 2009, pp. 345–346 (2009)

    Google Scholar 

  17. Herrera-Tapia, J., Hernández-Orallo, E., Manzoni, P., Tomas, A., Calafate, C.T., Cano, J.-C.: Evaluating the impact of data transfer time and mobility patterns in opportunistic networks. In: 2016 International IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), pp. 25–32 (2016)

    Google Scholar 

  18. Herrera-Tapia, J., Hernández-Orallo, E., Tomas, A., Manzoni, P., Calafate, C.T., Cano, J.-C.: Improving Message Delivery Performance in Opportunistic Networks Using a Forced-Stop Diffusion Scheme, pp. 156–168. Springer, Cham (2016)

    Google Scholar 

  19. Förster, A., Garg, K., Nguyen, H.A., Giordano, S.: On context awareness and social distance in human mobility traces. In: Third ACM International Workshop on Mobile Opportunistic Networks, Zürich, Switzerland, pp. 5–12 (2012)

    Google Scholar 

  20. Boldrini, C., Conti, M., Passarella, A.: Modelling data dissemination in opportunistic networks. In: Proceedings of the third ACM Workshop on Challenged Networks - CHANTS 2008, San Francisco, USA, pp. 89–96 (2008)

    Google Scholar 

  21. Herrera-Tapia, J., Hernández-Orallo, E., Tomás, A., Manzoni, P., Calafate, C.T., Cano, J.-C.: Friendly-sharing: improving the performance of city sensoring through contact-based messaging applications. Sensors 16(9), 1523 (2016)

    Google Scholar 

  22. Costa, P., Gavidia, D., Koldehofe, B., Miranda, H., Musolesi, M., Riva, O.: When cars start gossiping. In: Proceedings of the 6th Workshop on Middleware for Network Eccentric and Mobile Applications - MiNEMA 2008, pp. 1–4 (2008)

    Google Scholar 

  23. Zhu, H., Li, M.: Dealing with vehicular traces. In: Studies on Urban Vehicular Ad-hoc Networks, pp. 15–21. Springer New York (2013)

    Google Scholar 

  24. Sanguesa, J.A., Fogue, M., Garrido, P., Martinez, F.J., Cano, J.C., Calafate, C.T.: A survey and comparative study of broadcast warning message dissemination schemes for VANETs. Mob. Inf. Syst. 2016, 18 (2016)

    Google Scholar 

  25. Luo, P., Huang, H., Shu, W., Li, M., Wu, M.-Y.: NET 07–2 - performance evaluation of vehicular DTN routing under realistic mobility models. In: 2008 IEEE Wireless Communications and Networking Conference, pp. 2206–2211 (2008)

    Google Scholar 

  26. Amici, R., Bonola, M., Bracciale, L., Rabuffi, A., Loreti, P., Bianchi, G.: Performance assessment of an epidemic protocol in VANET using real traces. Procedia Comput. Sci. 40, 92–99 (2014)

    Article  Google Scholar 

  27. Bischoff, J., Maciejewski, M., Sohr, A.: Analysis of Berlin’s taxi services by exploring GPS traces. In: 2015 International Conference on Models and Technologies for Intelligent Transportation Systems, MT-ITS 2015, December 2012, pp. 209–215 (2015)

    Google Scholar 

  28. Fu, Q., Zhang, L., Feng, W., Zheng, Y.: DAWN: a density adaptive routing algorithm for vehicular delay tolerant sensor networks. In: 2011 49th Annual Allerton Conference on Communication, Control, and Computing, Allerton 2011, pp. 1250–1257 (2011)

    Google Scholar 

  29. Marquez-Barja, J.M., Ahmadi, H., Tornell, S.M., Calafate, C.T., Cano, J.C., Manzoni, P., DaSilva, L.A.: Breaking the vehicular wireless communications barriers: vertical handover techniques for heterogeneous networks. IEEE Trans. Veh. Technol. 64(12), 5878–5890 (2015)

    Article  Google Scholar 

  30. Chen, Q.: Multi-metric opportunistic routing for VANETs in urban scenario. In: 2011 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, pp. 118–122 (2011)

    Google Scholar 

  31. Förster, A., Udugama, A., Görg, C., Kuladinithi, K., Timm-Giel, A., Cama-Pinto, A.: A novel data dissemination model for organic data flows. In: 7th EAI International Conference on Mobile Networks and Management (MONAMI), Santander, Spain (2015)

    Google Scholar 

  32. Mallanda, C., Else, S., Suri, A., Kunchkarra, V., Iyengar, S., Kannan, R., Durresi, A.: Simulating wireless sensor networks with OMNeT++. IEEE Computers (2005)

    Google Scholar 

  33. Karney, C.F.F.: Transverse Mercator with an accuracy of a few nanometers. J. Geodesy 85(8), 475–485 (2011)

    Article  Google Scholar 

  34. Karp, R., Schindelhauer, C., Shenker, S., Vocking, B.: Randomized rumor spreading. In: Proceedings of 41st Annual Symposium on Foundations of Computer Science, pp. 565–574. IEEE (2000)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Ministerio de Economía y Competitividad, Programa Estatal de Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad, Proyectos I+D+I 2014, Spain, under Grant TEC2014-52690-R, the Generalitat Valenciana, Spain, under Grant AICO/2015/108, the Secretaría Nacional de Educación Superior, Ciencia, Tecnología e Innovación del Ecuador (SENESCYT), the Universidad Laica Eloy Alfaro de Manabí, Ecuador, and the University of Bremen, Germany.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jorge Herrera-Tapia or Pietro Manzoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Herrera-Tapia, J., Förster, A., Hernández-Orallo, E., Udugama, A., Tomas, A., Manzoni, P. (2017). Mobility as the Main Enabler of Opportunistic Data Dissemination in Urban Scenarios. In: Puliafito, A., Bruneo, D., Distefano, S., Longo, F. (eds) Ad-hoc, Mobile, and Wireless Networks. ADHOC-NOW 2017. Lecture Notes in Computer Science(), vol 10517. Springer, Cham. https://doi.org/10.1007/978-3-319-67910-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67910-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67909-9

  • Online ISBN: 978-3-319-67910-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics