Skip to main content

Microbial Synthesis of Plant Alkaloids

  • Chapter
  • First Online:
Book cover Biotechnology of Natural Products

Abstract

Of the roughly 12,000 alkaloids naturally produced by plant species, roughly half comprise the monoterpene indole alkaloid (MIA) and benzylisoquinoline alkaloid (BIA) families. These compounds include the opiate analgesics morphine and codeine, the anticancer agents vinblastine and vincristine, and a vast assemblage of other untapped pharmacological activities. Low in planta metabolite levels, a lack of robust genetic tools for plant metabolic engineering, and complex product stereochemistry render both crop-based manufacturing and total chemical synthesis unfeasible for the majority of plant alkaloids. Instead, recent achievements in enzyme discovery and pathway elucidation coupled with the advent of synthetic biology have provided a framework for assembling plant alkaloid pathways in tractable microorganisms. In this chapter we provide an overview of MIA and BIA biosynthetic networks and highlight key pathway and biochemical commonalities shared by these two metabolite classes. In light of the recent intense period of pathway elucidation and reconstitution, we recapitulate efforts to assemble MIA and BIA branches in Escherichia coli and yeast (Saccharomyces cerevisiae). Finally, we survey genetic strategies and fermentation conditions that will play pivotal roles in boosting microbial alkaloid production to industrially relevant titers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

10HC:

10-hydroxycitronellol

10HG:

10-hydroxygeraniol

10HGO:

10-hydroxygeraniol oxidoreductase

3,4-dHPAA:

3,4-dihydroxyphenylacetaldehyde

4′OMT:

3′-hydroxy-N-methylcoclaurine 4′-O-methyltransferase

4-HPAA:

4-hydroxyphenylacetaldehyde

4-HPP:

4-hydroxyphenylpyruvate

6OMT:

Norcoclaurine 6-O-methyltransferase

7-DLGA:

7-deoxyloganic acid

7DLH:

7-deoxyloganic acid hydroxylase

AAAT:

Aromatic amino acid transferase

AADC:

Amino acid decarboxylase

ACAT:

Acetoacetyl-CoA thiolase

ARS:

Autonomously replicating sequence

AT:

Acetyl transferase

BBE:

Berberine bridge enzyme

BIA:

Benzylisoquinoline alkaloid

CAS:

Canadine synthase

CFS:

Cheilanthifoline synthase

CNMT:

Coclaurine N-methyltransferase

CODM:

Codeine demethylase

COR:

Codeinone reductase

CPR:

Cytochrome P450 reductase

CXE:

Carboxylesterase

CYB5:

Cytochrome b5

CYP:

Cytochrome P450

DMAPP:

Dimethylallyl pyrophosphate

DODC:

DOPA decarboxylase

DOPA:

3,4-dihydroxyphenylalanine

DXP:

Deoxyxylulose 5-phosphate

ER:

Endoplasmic reticulum

FBR:

Feedback resistant

FPP:

Farnesyl pyrophosphate

G10H:

Geraniol 10-hydroxylase

GES:

Geraniol synthase

GPP:

Geranyl pyrophosphate

HMG-CoA:

3-hydroxy-3-methylglutaryl CoA

HMGR:

HMG-CoA reductase

HMGS:

HMG-CoA synthase

IO:

Iridoid oxidase

IPP:

Isopentenyl pyrophosphate

IS:

Iridoid synthase

MAO:

Monoamine oxidase

MIA:

Monoterpene indole alkaloid

MSH:

(S)-N-methylstylopine 14-hydroxylase

MVD:

Mevalonate pyrophosphate decarboxylase

MVK:

Mevalonate kinase

NCS:

Norcoclaurine synthase

NMCH:

N-methylcoclaurine hydroxylase

P6H:

Protopine 6-hydroxylase

PDH:

Prephenate dehydrogenase

PMVK:

Phosphomevalonate kinase

Prx1:

Class III peroxidase

REPI:

Reticuline epimerase

ROS:

Reactive oxygen species

S9OMT:

Scoulerine 9-O-methyltransferase

SAR:

Salutaridine reductase

SAS:

Salutaridine synthase

SAT:

Salutaridinol acetyltransferase

SDR:

Short-chain dehydrogenase/reductase

SLS:

Secologanin synthase

SPS:

Stylopine synthase

STS:

Strictosidine synthase

T6ODM:

Thebaine 6-O-demethylase

TNMT:

Tetrahydroprotoberberine N-methyltransferase

TYR:

Tyrosine hydroxylase

References

  1. Paddon CJ, Westfall PJ, Pitera D, Benjamin K, Fisher K, McPhee D, et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature. 2013;496(7446):528–32.

    Article  CAS  Google Scholar 

  2. Hagel JM, Facchini PJ. Benzylisoquinoline alkaloid metabolism–a century of discovery and a brave new world. Plant Cell Physiol. 2013;54(5):647–72.

    Article  CAS  Google Scholar 

  3. Kutchan TM. Alkaloid biosynthesis [mdash] the basis for metabolic engineering of medicinal plants. Plant Cell. 1995;7(7):1059.

    CAS  Google Scholar 

  4. Liscombe DK, Facchini PJ. Evolutionary and cellular webs in benzylisoquinoline alkaloid biosynthesis. Curr Opin Biotechnol. 2008;19(2):173–80.

    Article  CAS  Google Scholar 

  5. Narcross L, Fossati E, Bourgeois L, Dueber JE, Martin VJ. Microbial factories for the production of benzylisoquinoline alkaloids. Trends Biotechnol. 2016;34(3):228–41.

    Article  CAS  Google Scholar 

  6. Organization WH. WHO model list of essential medicines: 18th list, April 2013. 2013.

    Google Scholar 

  7. Narcotic drugs technical report: Estimated world requirements for 2016. United Nations, New York. 2016 [cited 2016 September 28]; Available from: http://www.incb.org/incb/en/narcotic-drugs/Technical_Reports/narcotic_drugs_reports.html.

  8. McCoy E, O’Connor SE. Natural products from plant cell cultures, Natural compounds as drugs, vol. I. Basel: Springer; 2008. p. 329–70.

    Google Scholar 

  9. Glenn WS, Runguphan W, O’Connor SE. Recent progress in the metabolic engineering of alkaloids in plant systems. Curr Opin Biotechnol. 2013;24(2):354–65.

    Article  CAS  Google Scholar 

  10. Nakagawa A, Matsumura E, Koyanagi T, Katayama T, Kawano N, Yoshimatsu K, et al. Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli. Nat Commun. 2016;7:10390.

    Article  CAS  Google Scholar 

  11. Brown S, Clastre M, Courdavault V, O’Connor SE. De novo production of the plant-derived alkaloid strictosidine in yeast. PNAS. 2015;112(11):3205–10.

    Article  CAS  Google Scholar 

  12. Campbell A, Bauchart P, Gold ND, Zhu Y, De Luca V, Martin VJ. Engineering of a nepetalactol-producing platform strain of Saccharomyces cerevisiae for the production of plant seco-iridoids. ACS Synth Biol. 2016;5(5):405–14.

    Article  CAS  Google Scholar 

  13. Fossati E, Ekins A, Narcross L, Zhu Y, Falgueyret J-P, Beaudoin GA, et al. Reconstitution of a 10-gene pathway for synthesis of the plant alkaloid dihydrosanguinarine in Saccharomyces cerevisiae. Nat Commun. 2014;5:3283.

    Article  CAS  Google Scholar 

  14. Fossati E, Narcross L, Ekins A, Falgueyret J-P, Martin VJ. Synthesis of morphinan alkaloids in Saccharomyces cerevisiae. PLoS One. 2015;10:e0124459.

    Article  CAS  Google Scholar 

  15. Li Y, Smolke CD. Engineering biosynthesis of the anticancer alkaloid noscapine in yeast. Nat Commun. 2016;7:12137.

    Article  CAS  Google Scholar 

  16. Trenchard IJ, Smolke CD. Engineering strategies for the fermentative production of plant alkaloids in yeast. Metab Eng. 2015;30(7):96–104.

    Article  CAS  Google Scholar 

  17. Gold ND, Gowen CM, Lussier F-X, Cautha SC, Mahadevan R, Martin VJ. Metabolic engineering of a tyrosine-overproducing yeast platform using targeted metabolomics. Microb Cell Factories. 2015;14(1):1.

    Article  CAS  Google Scholar 

  18. Patnaik R, Zolandz RR, Green DA, Kraynie DF. L-tyrosine production by recombinant Escherichia coli: fermentation optimization and recovery. Biotechnol Bioeng. 2008;99(4):741–52.

    Article  CAS  Google Scholar 

  19. Santos CNS, Xiao W, Stephanopoulos G. Rational, combinatorial, and genomic approaches for engineering L-tyrosine production in Escherichia coli. PNAS. 2012;109(34):13538–43.

    Article  CAS  Google Scholar 

  20. Wei T, Cheng B-Y, Liu J-Z. Genome engineering Escherichia coli for L-DOPA overproduction from glucose. Sci Rep. 2016;6. 30080; doi: 10.1038/srep30080

  21. DeLoache WC, Russ ZN, Narcross L, Gonzales AM, Martin VJ, Dueber JE. An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose. Nat Chem Biol. 2015;11:465–71.

    Google Scholar 

  22. Nakagawa A, Minami H, Kim J-S, Koyanagi T, Katayama T, Sato F, et al. A bacterial platform for fermentative production of plant alkaloids. Nat Commun. 2011;2:326.

    Article  CAS  Google Scholar 

  23. Tabata K, Hashimoto S-I. Production of mevalonate by a metabolically-engineered Escherichia coli. Biotechnol Lett. 2004;26(19):1487–91.

    Article  CAS  Google Scholar 

  24. Westfall PJ, Pitera DJ, Lenihan JR, Eng D, Woolard FX, Regentin R, et al. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. PNAS. 2012;109(3):E111–E8.

    Article  CAS  Google Scholar 

  25. Liu J, Zhang W, Du G, Chen J, Zhou J. Overproduction of geraniol by enhanced precursor supply in Saccharomyces cerevisiae. J Biotechnol. 2013;168(4):446–51.

    Article  CAS  Google Scholar 

  26. Zhou J, Wang C, Yang L, Choi E-S, Kim S-W. Geranyl diphosphate synthase: an important regulation point in balancing a recombinant monoterpene pathway in Escherichia coli. Enzym Microb Technol. 2015;68:50–5.

    Article  CAS  Google Scholar 

  27. Luttik M, Vuralhan Z, Suir E, Braus G, Pronk J, Daran J. Alleviation of feedback inhibition in Saccharomyces cerevisiae aromatic amino acid biosynthesis: quantification of metabolic impact. Metab Eng. 2008;10(3):141–53.

    Article  CAS  Google Scholar 

  28. Krömer JO, Nunez-Bernal D, Averesch NJ, Hampe J, Varela J, Varela C. Production of aromatics in Saccharomyces cerevisiae—a feasibility study. J Biotechnol. 2013;163(2):184–93.

    Article  CAS  Google Scholar 

  29. Trenchard IJ, Siddiqui MS, Thodey K, Smolke CD. De novo production of the key branch point benzylisoquinoline alkaloid reticuline in yeast. Metab Eng. 2015;31:74–83.

    Article  CAS  Google Scholar 

  30. Nakagawa A, Matsuzaki C, Matsumura E, Koyanagi T, Katayama T, Yamamoto K, et al. (R, S)-tetrahydropapaveroline production by stepwise fermentation using engineered Escherichia coli. Sci Rep. 2014;4:6695.

    Article  CAS  Google Scholar 

  31. Dudley QM, Anderson KC, Jewett MC. Cell-free mixing of Escherichia coli crude extracts to prototype and rationally engineer high-titer mevalonate synthesis. ACS Synth Biol. 2016;5(12):1578–88.

    Article  CAS  Google Scholar 

  32. Asada K, Salim V, Masada-Atsumi S, Edmunds E, Nagatoshi M, Terasaka K, et al. A 7-deoxyloganetic acid glucosyltransferase contributes a key step in secologanin biosynthesis in Madagascar periwinkle. Plant Cell. 2013;25(10):4123–34.

    Article  CAS  Google Scholar 

  33. Miettinen K, Dong L, Navrot N, Schneider T, Burlat V, Pollier J, et al. The seco-iridoid pathway from Catharanthus roseus. Nat Commun. 2014;5:3606.

    Google Scholar 

  34. Salim V, Wiens B, Masada-Atsumi S, Yu F, De Luca V. 7-Deoxyloganetic acid synthase catalyzes a key 3 step oxidation to form 7-deoxyloganetic acid in Catharanthus roseus iridoid biosynthesis. Phytochemistry. 2014;101:23–31.

    Article  CAS  Google Scholar 

  35. Salim V, Yu F, Altarejos J, Luca V. Virus-induced gene silencing identifies Catharanthus roseus 7-deoxyloganic acid 7-hydroxylase, a step in iridoid and monoterpene indole alkaloid biosynthesis. Plant J. 2013;76(5):754–65.

    Article  CAS  Google Scholar 

  36. Farrow SC, Hagel JM, Beaudoin GA, Burns DC, Facchini PJ. Stereochemical inversion of (S)-reticuline by a cytochrome P450 fusion in opium poppy. Nat Chem Biol. 2015;11(9):728–32.

    Article  CAS  Google Scholar 

  37. Winzer T, Kern M, King AJ, Larson TR, Teodor RI, Donninger SL, et al. Morphinan biosynthesis in opium poppy requires a P450-oxidoreductase fusion protein. Science. 2015;349(6245):309–12.

    Article  CAS  Google Scholar 

  38. Galanie S, Thodey K, Trenchard IJ, Interrante MF, Smolke CD. Complete biosynthesis of opioids in yeast. Science. 2015;349(6252):1095–100.

    Article  CAS  Google Scholar 

  39. Hawkins KM, Smolke CD. Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae. Nat Chem Biol. 2008;4(9):564–73.

    Article  CAS  Google Scholar 

  40. Beaudoin GA, Facchini PJ. Benzylisoquinoline alkaloid biosynthesis in opium poppy. Planta. 2014;240(1):19–32.

    Article  CAS  Google Scholar 

  41. Kries H, O’Connor SE. Biocatalysts from alkaloid producing plants. Curr Opin Chem Biol. 2016;31:22–30.

    Article  CAS  Google Scholar 

  42. Pan Q, Mustafa NR, Tang K, Choi YH, Verpoorte R. Monoterpenoid indole alkaloids biosynthesis and its regulation in Catharanthus roseus: a literature review from genes to metabolites. Phytochem Rev. 2016;15(2):221–50.

    Article  CAS  Google Scholar 

  43. Thamm AM, Qu Y, De Luca V. Discovery and metabolic engineering of iridoid/secoiridoid and monoterpenoid indole alkaloid biosynthesis. Phytochem Rev. 2016;15(3):339–61.

    Article  CAS  Google Scholar 

  44. Kishimoto S, Sato M, Tsunematsu Y, Watanabe K. Evaluation of biosynthetic pathway and engineered biosynthesis of alkaloids. Molecules. 2016;21(8):1078.

    Article  CAS  Google Scholar 

  45. O’Connor SE. Engineering of secondary metabolism. Annu Rev Genet. 2015;49:71–94.

    Article  CAS  Google Scholar 

  46. Pyne M, Narcross L, Fossati E, Bourgeois L, Burton E, Gold N, et al. Reconstituting plant secondary metabolism in Saccharomyces cerevisiae for production of high-value benzylisoquinoline alkaloids. Methods Enzymol. 2016;575:195–224.

    Google Scholar 

  47. Schläger S, Dräger B. Exploiting plant alkaloids. Curr Opin Biotechnol. 2016;37:155–64.

    Article  CAS  Google Scholar 

  48. O’Connor SE, Maresh JJ. Chemistry and biology of monoterpene indole alkaloid biosynthesis. Nat Prod Rep. 2006;23(4):532–47.

    Article  CAS  Google Scholar 

  49. Lange BM, Rujan T, Martin W, Croteau R. Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. PNAS. 2000;97(24):13172–7.

    Article  CAS  Google Scholar 

  50. Rohmer M. The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants†. Nat Prod Rep. 1999;16(5):565–74.

    Article  CAS  Google Scholar 

  51. Kizer L, Pitera DJ, Pfleger BF, Keasling JD. Application of functional genomics to pathway optimization for increased isoprenoid production. Appl Environ Microbiol. 2008;74(10):3229–41.

    Article  CAS  Google Scholar 

  52. Brown MS, Goldstein JL. Multivalent feedback regulation of HMG CoA reductase, a control mechanism coordinating isoprenoid synthesis and cell growth. J Lipid Res. 1980;21(5):505–17.

    CAS  Google Scholar 

  53. Siperstein MD, Guest MJ. Studies on the site of the feedback control of cholesterol synthesis. J Clin Invest. 1960;39(4):642.

    Article  CAS  Google Scholar 

  54. Dorsey JK, Porter JW. The inhibition of mevalonic kinase by geranyl and farnesyl pyrophosphates. J Biol Chem. 1968;243(18):4667–70.

    CAS  Google Scholar 

  55. Brown MS, Dana SE, Goldstein JL. Regulation of 3-hydroxy-3-methylglutaryl coenzyme a reductase activity in human fibroblasts by lipoproteins. PNAS. 1973;70(7):2162–6.

    Article  CAS  Google Scholar 

  56. Hunter WN. The non-mevalonate pathway of isoprenoid precursor biosynthesis. J Biol Chem. 2007;282(30):21573–7.

    Article  CAS  Google Scholar 

  57. Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol. 2003;21(7):796–802.

    Article  CAS  Google Scholar 

  58. Kirby J, Keasling JD. Metabolic engineering of microorganisms for isoprenoid production. Nat Prod Rep. 2008;25(4):656–61.

    Article  CAS  Google Scholar 

  59. Kirby J, Keasling JD. Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu Rev Plant Biol. 2009;60:335–55.

    Article  CAS  Google Scholar 

  60. Dinda B, Chowdhury DR, Mohanta BC. Naturally occurring iridoids, secoiridoids and their bioactivity. An updated review, part 3. Chem Pharm Bull. 2009;57(8):765–96.

    Article  CAS  Google Scholar 

  61. Donald K, Hampton RY, Fritz IB. Effects of overproduction of the catalytic domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase on squalene synthesis in Saccharomyces cerevisiae. Appl Environ Microbiol. 1997;63(9):3341–4.

    CAS  Google Scholar 

  62. Blanchard L, Karst F. Characterization of a lysine-to-glutamic acid mutation in a conservative sequence of farnesyl diphosphate synthase from Saccharomyces cerevisiae. Gene. 1993;125(2):185–9.

    Article  CAS  Google Scholar 

  63. Fischer MJ, Meyer S, Claudel P, Bergdoll M, Karst F. Metabolic engineering of monoterpene synthesis in yeast. Biotechnol Bioeng. 2011;108(8):1883–92.

    Article  CAS  Google Scholar 

  64. Jongedijk E, Cankar K, Ranzijn J, Krol S, Bouwmeester H, Beekwilder J. Capturing of the monoterpene olefin limonene produced in Saccharomyces cerevisiae. Yeast. 2015;32(1):159–71.

    CAS  Google Scholar 

  65. Sarria S, Wong B, Martín HG, Keasling JD, Peralta-Yahya P. Microbial synthesis of pinene. ACS Synth Biol. 2014;3(7):466–75.

    Article  CAS  Google Scholar 

  66. Arifin AA, Don MM, Uzir MH. The feasibility of growing cells of Saccharomyces cerevisiae for citronellol production in a continuous-closed-gas-loop bioreactor (CCGLB). Bioresour Technol. 2011;102(19):9318–20.

    Article  CAS  Google Scholar 

  67. Courdavault V, Papon N, Clastre M, Giglioli-Guivarc’h N, St-Pierre B, Burlat V. A look inside an alkaloid multisite plant: the Catharanthus logistics. Curr Opin Plant Biol. 2014;19:43–50.

    Article  CAS  Google Scholar 

  68. Le Men J, Taylor WI. A uniform numbering system for indole alkaloids. Experientia. 1965;21(9):508–10.

    Article  Google Scholar 

  69. Szabó LF. Rigorous biogenetic network for a group of indole alkaloids derived from strictosidine. Molecules. 2008;13(8):1875–96.

    Article  CAS  Google Scholar 

  70. Geerlings A, Ibañez MM-L, Memelink J, van der Heijden R, Verpoorte R. Molecular cloning and analysis of strictosidine β-D-glucosidase, an enzyme in terpenoid indole alkaloid biosynthesis in Catharanthus roseus. J Biol Chem. 2000;275(5):3051–6.

    Article  CAS  Google Scholar 

  71. Gerasimenko I, Sheludko Y, Ma X, Stöckigt J. Heterologous expression of a Rauvolfia cDNA encoding strictosidine glucosidase, a biosynthetic key to over 2000 monoterpenoid indole alkaloids. Eur J Biochem. 2002;269(8):2204–13.

    Article  CAS  Google Scholar 

  72. Heinstein P, Höfle G, Stöckigt J. Involvement of cathenamine in the formation of N–analogues of indole alkaloids. Planta Med. 1979;37(12):349–57.

    Article  CAS  Google Scholar 

  73. Benayad S, Ahamada K, Lewin G, Evanno L, Poupon E. Preakuammicine: a long-awaited missing link in the biosynthesis of monoterpene indole alkaloids. Eur J Org Chem. 2016;8:1494–99.

    Google Scholar 

  74. El-Sayed M, Choi YH, Frederich M, Roytrakul S, Verpoorte R. Alkaloid accumulation in Catharanthus roseus cell suspension cultures fed with stemmadenine. Biotechnol Lett. 2004;26(10):793–8.

    Article  CAS  Google Scholar 

  75. Qu Y, Easson ML, Froese J, Simionescu R, Hudlicky T, De Luca V. Completion of the seven-step pathway from tabersonine to the anticancer drug precursor vindoline and its assembly in yeast. PNAS. 2015;112(19):6224–9.

    Article  CAS  Google Scholar 

  76. Costa MMR, Hilliou F, Duarte P, Pereira LG, Almeida I, Leech M, et al. Molecular cloning and characterization of a vacuolar class III peroxidase involved in the metabolism of anticancer alkaloids in Catharanthus roseus. Plant Physiol. 2008;146(2):403–17.

    Article  CAS  Google Scholar 

  77. Hemscheidt T, Zenk M. Partial purification and characterization of a NADPH dependent tetrahydroalstonine synthase from Catharanthus roseus cell suspension cultures. Plant Cell Rep. 1985;4(4):216–9.

    Article  CAS  Google Scholar 

  78. Chen X, Dang T-TT, Facchini PJ. Noscapine comes of age. Phytochemistry. 2015;111:7–13.

    Article  CAS  Google Scholar 

  79. Chen X, Facchini PJ. Short-chain dehydrogenase/reductase catalyzing the final step of noscapine biosynthesis is localized to laticifers in opium poppy. Plant J. 2014;77(2):173–84.

    Article  CAS  Google Scholar 

  80. Dang T-TT, Chen X, Facchini PJ. Acetylation serves as a protective group in noscapine biosynthesis in opium poppy. Nat Chem Biol. 2015;11(2):104–6.

    Article  CAS  Google Scholar 

  81. Dang T-TT, Facchini PJ. Characterization of three O-methyltransferases involved in noscapine biosynthesis in opium poppy. Plant Physiol. 2012;159(2):618–31.

    Article  CAS  Google Scholar 

  82. Dang T-TT, Facchini PJ. CYP82Y1 is N-methylcanadine 1-hydroxylase, a key noscapine biosynthetic enzyme in opium poppy. J Biol Chem. 2014;289(4):2013–26.

    Article  CAS  Google Scholar 

  83. Dang T-TT, Facchini PJ. Cloning and characterization of canadine synthase involved in noscapine biosynthesis in opium poppy. FEBS Lett. 2014;588(1):198–204.

    Article  CAS  Google Scholar 

  84. Facchini PJ, Bohlmann J, Covello PS, De Luca V, Mahadevan R, Page JE, et al. Synthetic biosystems for the production of high-value plant metabolites. Trends Biotechnol. 2012;30(3):127–31.

    Article  CAS  Google Scholar 

  85. Thodey K, Galanie S, Smolke CD. A microbial biomanufacturing platform for natural and semisynthetic opioids. Nat Chem Biol. 2014;10(10):837–44.

    Article  CAS  Google Scholar 

  86. Fukuda K, Watanabe M, Asano K, Ouchi K, Takasawa S. A mutated ARO4 gene for feedback-resistant DAHP synthase which causes both o-fluoro-dl-phenylalamine resistance and β-phenethyl-alcohol overproduction in Saccharomyces cerevisiae. Curr Genet. 1991;20(6):453–6.

    Article  CAS  Google Scholar 

  87. Hagel JM, Facchini PJ. Dioxygenases catalyze the O-demethylation steps of morphine biosynthesis in opium poppy. Nat Chem Biol. 2010;6(4):273–5.

    Article  CAS  Google Scholar 

  88. Minami H, Kim J-S, Ikezawa N, Takemura T, Katayama T, Kumagai H, et al. Microbial production of plant benzylisoquinoline alkaloids. PNAS. 2008;105(21):7393–8.

    Article  CAS  Google Scholar 

  89. Galanie S, Smolke CD. Optimization of yeast-based production of medicinal protoberberine alkaloids. Microb Cell Factories. 2015;14(1):1–13.

    Article  CAS  Google Scholar 

  90. Gesell A, Chávez MLD, Kramell R, Piotrowski M, Macheroux P, Kutchan TM. Heterologous expression of two FAD-dependent oxidases with (S)-tetrahydroprotoberberine oxidase activity from Argemone mexicana and Berberis wilsoniae in insect cells. Planta. 2011;233(6):1185–97.

    Article  CAS  Google Scholar 

  91. Beaudoin GA, Facchini PJ. Isolation and characterization of a cDNA encoding (S)-cis-N-methylstylopine 14-hydroxylase from opium poppy, a key enzyme in sanguinarine biosynthesis. Biochem Biophys Res Commun. 2013;431(3):597–603.

    Article  CAS  Google Scholar 

  92. Hagel JM, Beaudoin GA, Fossati E, Ekins A, Martin VJ, Facchini PJ. Characterization of a flavoprotein oxidase from opium poppy catalyzing the final steps in sanguinarine and papaverine biosynthesis. J Biol Chem. 2012;287(51):42972–83.

    Article  CAS  Google Scholar 

  93. Takemura T, Ikezawa N, Iwasa K, Sato F. Molecular cloning and characterization of a cytochrome P450 in sanguinarine biosynthesis from Eschscholzia californica cells. Phytochemistry. 2013;91:100–8.

    Article  CAS  Google Scholar 

  94. Narcross L, Bourgeois L, Fossati E, Burton E, Martin VJ. Mining enzyme diversity of transcriptome libraries through DNA synthesis for benzylisoquinoline alkaloid pathway optimization in yeast. ACS Synth Biol. 2016;5(12):1505–18.

    Article  CAS  Google Scholar 

  95. Winzer T, Gazda V, He Z, Kaminski F, Kern M, Larson TR, et al. A Papaver somniferum 10-gene cluster for synthesis of the anticancer alkaloid noscapine. Science. 2012;336(6089):1704–8.

    Article  CAS  Google Scholar 

  96. De Luca V, Salim V, Thamm A, Masada SA, Yu F. Making iridoids/secoiridoids and monoterpenoid indole alkaloids: progress on pathway elucidation. Curr Opin Plant Biol. 2014;19:35–42.

    Article  CAS  Google Scholar 

  97. Meunier B, De Visser SP, Shaik S. Mechanism of oxidation reactions catalyzed by cytochrome P450 enzymes. Chem Rev. 2004;104(9):3947–80.

    Article  CAS  Google Scholar 

  98. Pompon D, Louerat B, Bronine A, Urban P. Yeast expression of animal and plant P450s in optimized redox environments. Methods Enzymol. 1996;272:51–64.

    Article  CAS  Google Scholar 

  99. Zangar RC, Davydov DR, Verma S. Mechanisms that regulate production of reactive oxygen species by cytochrome P450. Toxicol Appl Pharmacol. 2004;199(3):316–31.

    Article  CAS  Google Scholar 

  100. Hatakeyama M, Kitaoka T, Ichinose H. Heterologous expression of fungal cytochromes P450 (CYP5136A1 and CYP5136A3) from the white-rot basidiomycete Phanerochaete chrysosporium: functionalization with cytochrome b5 in Escherichia coli. Enzym Microb Technol. 2016;89:7–14.

    Article  CAS  Google Scholar 

  101. Schenkman JB, Jansson I. The many roles of cytochrome b5. Pharmacol Ther. 2003;97(2):139–52.

    Article  CAS  Google Scholar 

  102. Zimmer T, Ogura A, Takewaka T, Zimmer R-M, Ohta A, Takagi M. Gene regulation in response to overexpression of cytochrome P450 and proliferation of the endoplasmic reticulum in Saccharomyces cerevisiae. Biosci Biotechnol Biochem. 2000;64(9):1930–6.

    Article  CAS  Google Scholar 

  103. Yazaki K. Transporters of secondary metabolites. Curr Opin Plant Biol. 2005;8(3):301–7.

    Article  CAS  Google Scholar 

  104. Choi K-B, Morishige T, Shitan N, Yazaki K, Sato F. Molecular cloning and characterization of coclaurine N-methyltransferase from cultured cells of Coptis japonica. J Biol Chem. 2002;277(1):830–5.

    Article  CAS  Google Scholar 

  105. Desgagné-Penix I, Facchini PJ. Systematic silencing of benzylisoquinoline alkaloid biosynthetic genes reveals the major route to papaverine in opium poppy. Plant J. 2012;72(2):331–44.

    Article  CAS  Google Scholar 

  106. Ounaroon A, Decker G, Schmidt J, Lottspeich F, Kutchan TM. (R, S)-Reticuline 7-O-methyltransferase and (R, S)-norcoclaurine 6-O-methyltransferase of Papaver somniferum–cDNA cloning and characterization of methyl transfer enzymes of alkaloid biosynthesis in opium poppy. Plant J. 2003;36(6):808–19.

    Article  CAS  Google Scholar 

  107. Sato F, Tsujita T, Katagiri Y, Yoshida S, Yamada Y. Purification and characterization of S-adenosyl-L-methionine: norcoclaurine 6-O-methyltransferase from cultured Coptis japonica cells. Eur J Biochem. 1994;225(1):125–31.

    Article  CAS  Google Scholar 

  108. Dueber JE, GC W, Malmirchegini GR, Moon TS, Petzold CJ, Ullal AV, et al. Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol. 2009;27(8):753–9.

    Article  CAS  Google Scholar 

  109. Kell DB, Swainston N, Pir P, Oliver SG. Membrane transporter engineering in industrial biotechnology and whole cell biocatalysis. Trends Biotechnol. 2015;33(4):237–46.

    Article  CAS  Google Scholar 

  110. Diallinas G. Understanding transporter specificity and the discrete appearance of channel-like gating domains in transporters. Front Pharmacol. 2014;5:207.

    Article  CAS  Google Scholar 

  111. Doroshenko V, Airich L, Vitushkina M, Kolokolova A, Livshits V, Mashko S. YddG from Escherichia coli promotes export of aromatic amino acids. FEMS Microbiol Lett. 2007;275(2):312–8.

    Article  CAS  Google Scholar 

  112. Yu F, De Luca V. ATP-binding cassette transporter controls leaf surface secretion of anticancer drug components in Catharanthus roseus. PNAS. 2013;110(39):15830–5.

    Article  CAS  Google Scholar 

  113. Jones CM, Lozada NJH, Pfleger BF. Efflux systems in bacteria and their metabolic engineering applications. Appl Microbiol Biotechnol. 2015;99(22):9381–93.

    Article  CAS  Google Scholar 

  114. Liu Q, Cheng Y, Xie X, Xu Q, Chen N. Modification of tryptophan transport system and its impact on production of L-tryptophan in Escherichia coli. Bioresour Technol. 2012;114:549–54.

    Article  CAS  Google Scholar 

  115. Boyarskiy S, Tullman-Ercek D. Getting pumped: membrane efflux transporters for enhanced biomolecule production. Curr Opin Chem Biol. 2015;28:15–9.

    Article  CAS  Google Scholar 

  116. Mukhopadhyay A. Tolerance engineering in bacteria for the production of advanced biofuels and chemicals. Trends Microbiol. 2015;23(8):498–508.

    Article  CAS  Google Scholar 

  117. Zhou G, Pereira JF, Delhaize E, Zhou M, Magalhaes JV, Ryan PR. Enhancing the aluminium tolerance of barley by expressing the citrate transporter genes SbMATE and FRD3. J Exp Bot. 2014;65(9):2381–90.

    Article  CAS  Google Scholar 

  118. Doshi R, Nguyen T, Chang G. Transporter-mediated biofuel secretion. PNAS. 2013;110(19):7642–7.

    Article  CAS  Google Scholar 

  119. Boyarskiy S, López SD, Kong N, Tullman-Ercek D. Transcriptional feedback regulation of efflux protein expression for increased tolerance to and production of n-butanol. Metab Eng. 2016;33:130–7.

    Article  CAS  Google Scholar 

  120. Dunlop MJ, Dossani ZY, Szmidt HL, Chu HC, Lee TS, Keasling JD, et al. Engineering microbial biofuel tolerance and export using efflux pumps. Mol Syst Biol. 2011;7(1):487.

    Article  Google Scholar 

  121. Yang N, Driessen AJ. The saci_2123 gene of the hyperthermoacidophile Sulfolobus acidocaldarius encodes an ATP-binding cassette multidrug transporter. Extremophiles. 2015;19(1):101–8.

    Article  CAS  Google Scholar 

  122. Zhang C, Chen X, Stephanopoulos G, Too HP. Efflux transporter engineering markedly improves amorphadiene production in Escherichia coli. Biotechnol Bioeng. 2016;113(8):1755–63.

    Article  CAS  Google Scholar 

  123. Milne N, Wahl S, van Maris A, Pronk J, Daran J. Excessive by-product formation: a key contributor to low isobutanol yields of engineered Saccharomyces cerevisiae strains. Metab Eng Commun. 2016;3:39–51.

    Article  CAS  Google Scholar 

  124. Kind S, Jeong WK, Schröder H, Zelder O, Wittmann C. Identification and elimination of the competing N-acetyldiaminopentane pathway for improved production of diaminopentane by Corynebacterium glutamicum. Appl Environ Microbiol. 2010;76(15):5175–80.

    Article  CAS  Google Scholar 

  125. Lechner A, Brunk E, Keasling JD. The need for integrated approaches in metabolic engineering. Cold Spring Harb Perspect Biol. 2016:a023903.

    Google Scholar 

  126. Matasci N, Hung L-H, Yan Z, Carpenter EJ, Wickett NJ, Mirarab S, et al. Data access for the 1,000 plants (1KP) project. GigaScience. 2014;3(1):1–10.

    Article  Google Scholar 

  127. Ryan OW, Skerker JM, Maurer MJ, Li X, Tsai JC, Poddar S, et al. Selection of chromosomal DNA libraries using a multiplex CRISPR system. eLife. 2014;3:e03703.

    Article  CAS  Google Scholar 

  128. Shao Z, Zhao H, Zhao H. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res. 2009;37(2):e16–e.

    Article  CAS  Google Scholar 

  129. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. PNAS. 2000;97(12):6640–5.

    Article  CAS  Google Scholar 

  130. Yu D, Ellis HM, Lee E-C, Jenkins NA, Copeland NG. An efficient recombination system for chromosome engineering in Escherichia coli. PNAS. 2000;97(11):5978–83.

    Article  CAS  Google Scholar 

  131. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21.

    Article  CAS  Google Scholar 

  132. DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 2013;41:4336–43.

    Article  CAS  Google Scholar 

  133. Horwitz AA, Walter JM, Schubert MG, Kung SH, Hawkins K, Platt DM, et al. Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas. Cell Syst. 2015;1(1):88–96.

    Article  CAS  Google Scholar 

  134. Jakočiūnas T, Bonde I, Herrgård M, Harrison SJ, Kristensen M, Pedersen LE, et al. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metab Eng. 2015;28:213–22.

    Article  CAS  Google Scholar 

  135. Shi S, Liang Y, Zhang MM, Ang EL, Zhao H. A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae. Metab Eng. 2016;33:19–27.

    Article  CAS  Google Scholar 

  136. Alper H, Fischer C, Nevoigt E, Stephanopoulos G. Tuning genetic control through promoter engineering. Proc Natl Acad Sci U S A. 2005;102(36):12678–83.

    Article  CAS  Google Scholar 

  137. Curran KA, Karim AS, Gupta A, Alper HS. Use of expression-enhancing terminators in Saccharomyces cerevisiae to increase mRNA half-life and improve gene expression control for metabolic engineering applications. Metab Eng. 2013;19:88–97.

    Article  CAS  Google Scholar 

  138. Curran KA, Morse NJ, Markham KA, Wagman AM, Gupta A, Alper HS. Short synthetic terminators for improved heterologous gene expression in yeast. ACS Synth Biol. 2015;4(7):824–32.

    Article  CAS  Google Scholar 

  139. Sun J, Shao Z, Zhao H, Nair N, Wen F, JH X, et al. Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae. Biotechnol Bioeng. 2012;109(8):2082–92.

    Article  CAS  Google Scholar 

  140. Yamanishi M, Ito Y, Kintaka R, Imamura C, Katahira S, Ikeuchi A, et al. A genome-wide activity assessment of terminator regions in Saccharomyces cerevisiae provides a “terminatome” toolbox. ACS Synth Biol. 2013;2(6):337–47.

    Article  CAS  Google Scholar 

  141. Ehrenworth A, Sarria S, Peralta-Yahya P. Pterin-dependent mono-oxidation for the microbial synthesis of a modified monoterpene indole alkaloid. ACS Synth Biol. 2015;4(12):1295–307.

    Article  CAS  Google Scholar 

  142. Kim J-S, Nakagawa A, Yamazaki Y, Matsumura E, Koyanagi T, Minami H, et al. Improvement of reticuline productivity from dopamine by using engineered Escherichia coli. Biosci Biotechnol Biochem. 2013;77(10):2166–8.

    Article  CAS  Google Scholar 

  143. Ahn JO, Lee HW, Saha R, Park MS, Jung J-K, Lee D-Y. Exploring the effects of carbon sources on the metabolic capacity for shikimic acid production in Escherichia coli using in silico metabolic predictions. J Microbiol Biotechnol. 2008;18(11):1773–84.

    CAS  Google Scholar 

  144. Zimmer T, Vogel F, Ohta A, Takagi M, Schunck W-H. Protein quality—a determinant of the intracellular fate of membrane-bound cytochromes P450 in yeast. DNA Cell Biol. 1997;16(4):501–14.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent J. J. Martin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pyne, M.E. et al. (2018). Microbial Synthesis of Plant Alkaloids. In: Schwab, W., Lange, B., Wüst, M. (eds) Biotechnology of Natural Products. Springer, Cham. https://doi.org/10.1007/978-3-319-67903-7_5

Download citation

Publish with us

Policies and ethics