Advertisement

Lattices and Applications

  • Sueli I. R. Costa
  • Frédérique Oggier
  • Antonio Campello
  • Jean-Claude Belfiore
  • Emanuele Viterbo
Chapter
Part of the SpringerBriefs in Mathematics book series (BRIEFSMATH)

Abstract

A lattice in \(\mathbb {R}^{n}\) is a set of points (vectors) composed by all integer linear combinations of independent vectors.

References

  1. 1.
    J.F. Adams, Lectures on Lie Groups (Midway Reprints Series) (University of Chicago Press, Chicago, 1983)Google Scholar
  2. 2.
    E. Agrell, T. Eriksson, A. Vardy, K. Zeger, Closest point search in lattices. IEEE Trans. Inf. Theory 48(8), 2201–2214 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    M. Ajtai, Generating hard instances of lattice problems, in Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’96, New York, NY (ACM, 1996), pp. 99–108Google Scholar
  4. 6.
    W. Banaszczyk, New bounds in some transference theorems in the geometry of numbers. Math. Ann. 296(1), 625–635 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 8.
    E.S. Barnes, G.E. Wall, Some extreme forms defined in terms of abelian groups. J. Aust. Math. Soc. 1(1), 47–63 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 14.
    N. Bourbaki, Lie Groups and Lie Algebras: Chapters 4–6 (Elements of Mathematics) (Springer, Berlin, 2002)CrossRefzbMATHGoogle Scholar
  7. 20.
    J.W.S. Cassels, An Introduction to the Geometry of Numbers (Springer, Berlin, 1997)zbMATHGoogle Scholar
  8. 21.
    H. Cohen, A Course in Computational Algebraic Number Theory (Springer, New York, 1996)Google Scholar
  9. 23.
    J. Conway, N. Sloane, Voronoi regions of lattices, second moments of polytopes, and quantization. IEEE Trans. Inf. Theory 28(2), 211–226 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 24.
    J.H. Conway, N.J.A. Sloane, Laminated lattices. Ann. Math. 116(3), 593–620 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 25.
    J.H. Conway, N.J.A. Sloane, On the voronoi regions of certain lattices. SIAM J. Algebr. Discret. Methods 5(3), 294–305, (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 26.
    J.H. Conway, N.J.A. Sloane, Sphere-Packings, Lattices, and Groups (Springer, New York, 1998)zbMATHGoogle Scholar
  13. 72.
    D. Micciancio, S. Goldwasser, Complexity of Lattice Problems. The Kluwer International Series in Engineering and Computer Science, vol. 671 (Kluwer Academic Publishers, Boston, MA, 2002). A cryptographic perspectiveGoogle Scholar
  14. 73.
    D. Micciancio, O. Regev, Lattice-Based Cryptography. Post-Quantum Cryptography (Springer, Berlin, 2009)CrossRefzbMATHGoogle Scholar
  15. 77.
    G. Nebe, E.M. Rains, N.J.A. Sloane, A simple construction for the barnes-wall lattices, in Codes, Graphs, and Systems (Springer, Berlin, 2002), pp. 333–342zbMATHGoogle Scholar
  16. 86.
    C.A. Rogers, Packing and Covering (Cambridge University Press, Cambridge, 1964)zbMATHGoogle Scholar
  17. 90.
    A. Schurmann, F. Vallentin, Computational approaches to lattice packing and covering problems. Discret. Comput. Geom. 35(1), 73–116 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 98.
    N.J.A. Sloane, The sphere packing problem. Doc. Math. Extra Volume ICM, 387–396 (1998)Google Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Sueli I. R. Costa
    • 1
  • Frédérique Oggier
    • 2
  • Antonio Campello
    • 3
  • Jean-Claude Belfiore
    • 4
  • Emanuele Viterbo
    • 5
  1. 1.Institute of Mathematics, Statistics and Computer ScienceUniversity of CampinasCampinasBrazil
  2. 2.Division of Mathematical Sciences, School of Physical and Mathematical SciencesNanyang Technological UniversitySingaporeSingapore
  3. 3.Department of Electrical and Electronic EngineeringImperial College LondonLondonUK
  4. 4.Communications and Electronics DepartmentTélécom ParisTechParisFrance
  5. 5.Department of Electrical and Computer Systems EngineeringMonash UniversityClaytonAustralia

Personalised recommendations