Skip to main content

Designing a Framework for Smart IoT Adaptations

  • Conference paper
  • First Online:
Emerging Technologies for Developing Countries (AFRICATEK 2017)

Abstract

The Internet of Things (IoT) is the science of connecting multiple devices that coordinate to provide the service in question. IoT environments are complex, dynamic, rapidly changing and resource constrained. Therefore, proactively adapting devices to align with context fluctuations becomes a concern. To propose suitable configurations, it should be possible to sense information from devices, analyze the data and reconfigure them accordingly. Applied in the service of the environment, a fleet of devices can monitor environment indicators and control it in order to propose best fit solutions or prevent risks like over consumption of resources (e.g., water and energy). This paper describes our methodology in designing a framework for the monitoring and multi-instantiation of fleets of connected objects. First by identifying the particularities of the fleet, then by specifying connected object as a Dynamic Software Product Line (DSPL), capable of readjusting while running.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I. T. Union: Overview of the Internet of Things (2012)

    Google Scholar 

  2. Alférez, G.H., Pelechano, V., Mazo, R., Salinesi, C., Diaz, D.: Dynamic adaptation of service compositions with variability models. J. Syst. Softw. 91(1), 24–47 (2014)

    Article  Google Scholar 

  3. Salehie, M., Tahvildari, L.: Self-adaptive software: landscape and research challenges. ACM Trans. Auton. Adapt. Syst. 4(2), 1–42 (2009)

    Article  Google Scholar 

  4. Krupitzer, C., Roth, F.M., VanSyckel, S., Schiele, G., Becker, C.: A survey on engineering approaches for self-adaptive systems. Pervasive Mob. Comput. 17, 184–206 (2015)

    Article  Google Scholar 

  5. Denko, M.K., Yang, L.T., Zhang, Y.: Software architecture-based self-adaptation. Auton. Comput. Netw., 1–458 (2009)

    Google Scholar 

  6. Cheng, S.W., Garlan, D., Schmerl, B.: Evaluating the effectiveness of the rainbow self-adaptive system. In: Proceedings of 2009 ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2009, pp. 132–141 (2009)

    Google Scholar 

  7. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. Fut. Softw. Eng. (2005)

    Google Scholar 

  8. Filipe, J., Fred, A., Sharp, B.: Toward a self-adaptive multi-agent system to control dynamic processes. Commun. Comput. Inf. Sci. 129 (2011)

    Google Scholar 

  9. Baumer, E.P.S., Khovanskaya, V., Matthews, M., Reynolds, L., Schwanda Sosik, V., Gay, G.: Reviewing reflection: on the use of reflection in interactive system design. In: Proceedings of the 2014 Conference on Designing Interactive Systems—DIS ’14, pp. 93–102 (2014)

    Google Scholar 

  10. Mongiello, M., Boggia, G., Di Sciascio, E.: ReIOS: reflective architecting in the internet of objects. In: Proceedings of the 4th International Conference on Modelling of Engineering Software Development, pp. 384–389, 2016

    Google Scholar 

  11. Szvetits, M., Zdun, U.: Systematic literature review of the objectives, techniques, kinds, and architectures of models at runtime. Softw. Syst. Model. 15(1), 31–69 (2016)

    Article  Google Scholar 

  12. Rouvoy, R., Barone, P., Ding, Y., Eliassen, F., Hallsteinsen, S., Lorenzo, J., Mamelli, A., Scholz, U.: MUSIC: middleware support for self-adaptation in ubiquitous and service-oriented environments. Lecture Notes on Computer Science (including Subseries Lecture Notes on Artificial Intelligence and Lecture Notes on Bioinformatics), vol. 5525, pp. 164–182 (2009)

    Google Scholar 

  13. Capilla, R., Bosch, J., Trinidad, P., Ruiz-Cortés, A., Hinchey, M.: An overview of dynamic software product line architectures and techniques: observations from research and industry. J. Syst. Softw. 91(1), 3–23 (2014)

    Article  Google Scholar 

  14. Mazo, R., Dumitrescu, C., Salinesi, C., Diaz, D.: Recommendation heuristics for improving product line configuration processes. Recomm. Syst. Softw. Eng., 511–537 (2014)

    Google Scholar 

  15. Hinchey, M., Park, S., Schmid, K.: Building dynamic software product lines. Computer (Long. Beach. Calif.) 45(10), 22–26 (2012)

    Google Scholar 

  16. IBM: Autonomic computing white paper: an architectural blueprint for autonomic computing. IBM White Paper, p. 34 (2005)

    Google Scholar 

  17. Bencomo, N. Lee, J., Hallsteinsen, S.: How dynamic is your dynamic software product line? Work. Dyn. Softw. Prod. Lines (2010)

    Google Scholar 

  18. Dumitrescu, C., Mazo, R., Salinesi, C., Dauron, A.: Bridging the gap between product lines and systems engineering: an experience in variability management for automotive model based. In: Proceedings of the 17th International Software Product Line Conference (SPLC), Aug 2013

    Google Scholar 

  19. Clayman. S., Galis, A.: INOX: a managed service platform for inter-connected smart objects stuart. In: Proceedings of the Workshop on Internet Things Services Platforms—IoTSP ’11, pp. 1–8 (2011)

    Google Scholar 

  20. Athreya, A., DeBruhl, B., Tague, P.: Designing for self-configuration and self-adaptation in the Internet of Things. In: Proceedings of the 9th IEEE International Conference on Collaborative Computing: Networking, Applications and Worksharing, pp. 585–592 (2013)

    Google Scholar 

  21. Strassner, J., Agoulmine, N., Lehtihet, E.: FOCALE: a novel autonomic networking architecture. Int. Trans. Syst. Sci. Appl. J., 64–79 (2007)

    Google Scholar 

  22. Baresi, L., Di Ferdinando, A., Manzalini, A., Zambonelli, F.: The CASCADAS framework for autonomic communications. Auton. Commun., 1–374 (2009)

    Google Scholar 

  23. Vlacheas, P., Giaffreda, R., Stavroulaki, V., Kelaidonis, D., Foteinos, V., Poulios, G., Demestichas, P., Somov, A., Biswas, A., Moessner, K.: Enabling smart cities through a cognitive management framework for the internet of things. IEEE Commun. Mag. 51(6), 102–111 (2013)

    Article  Google Scholar 

  24. Ayala, I., Horcas, J.M., Amor, M., Fuentes, L.: Using models at runtime to adapt self-managed agents for the IoT. Sensors, 155–173 (2015)

    Google Scholar 

  25. Dehlinger, J., Lutz, R.R.: Gaia-PL: a product line engineering approach for efficiently designing multiagent systems. ACM Trans. Softw. Eng. Methodol. 20(4), 17:1–17:27 (2011)

    Google Scholar 

  26. Abu-Matar, M.: Towards a software defined reference architecture for smart city ecosystems. In: Proceedings of 2016 IEEE International Smart Cities Conference, pp. 1–6 (2016)

    Google Scholar 

  27. Abu-Matar, M., Gomaa, H.: An automated framework for variability management of service-oriented software product lines. In: Proceedings of 2013 IEEE 7th International Symposium on Service-Oriented Systems Engineering SOSE 2013, pp. 260–267 (2013)

    Google Scholar 

  28. Ayala, I., Amor, M., Fuentes, L., Troya, J.: A software product line process to develop agents for the IoT. Sensors 15(7), 15640–15660 (2015)

    Article  Google Scholar 

  29. COP22: [Online] http://cop22.ma/en/

  30. Mazo, R., Salinesi, C., Diaz, D., Muñoz-Fernández, J.C., Rincón, L., Salinesi, C., Tamura, G.: VariaMos: an extensible tool for engineering (dynamic) product lines. In: Proceedings of the 24th International Conference on Advanced Information Systems Engineering (CAiSE Forum’12), pp. 374–379 (2015)

    Google Scholar 

  31. Muñoz-Fernández, J.C., Tamura, G., Raúl, M., Salinesi, C.: Towards a requirements specification multi-view framework for self-adaptive systems. In: Proceedings of XL Latin American Computing Conference (CLEI), vol. 18(2), pp. 1–12 (2014)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the Moroccan « Ministère de l’Enseignement Supérieur, de la Recherche Scientifique et de la Formation des Cadres » , by the « French Embassy in Morocco » , and by the « Institut Français du Maroc » .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asmaa Achtaich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Achtaich, A., Souissi, N., Mazo, R., Salinesi, C., Roudies, O. (2018). Designing a Framework for Smart IoT Adaptations. In: Belqasmi, F., Harroud, H., Agueh, M., Dssouli, R., Kamoun, F. (eds) Emerging Technologies for Developing Countries. AFRICATEK 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 206. Springer, Cham. https://doi.org/10.1007/978-3-319-67837-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67837-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67836-8

  • Online ISBN: 978-3-319-67837-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics