Anastas, P., et al.: 2020 visions. Nature 463(7277), 26–32 (2010). https://www.nature.com/nature/journal/v463/n7277/full/463026a.html
Paulson, J.N., Stine, O.C., Bravo, H.C., Pop, M.: Robust methods for differential abundance analysis in marker gene surveys. Nat. Methods 10, 1200–1202 (2013)
CrossRef
Google Scholar
Parida, L., Haiminen, N., Haws, D., Suchodolski, J.: Host trait prediction of metagenomic data for topology-based visualization. In: Natarajan, R., Barua, G., Patra, M.R. (eds.) ICDCIT 2015. LNCS, vol. 8956, pp. 134–149. Springer, Cham (2015). doi:10.1007/978-3-319-14977-6_8
Google Scholar
Jonsson, V., Österlund, T., Nerman, O., Kristiansson, E.: Statistical evaluation of methods for identification of differentially abundant genes in comparative metagenomics. BMC Genomics 17(78), 1–14 (2016)
Google Scholar
Haiminen, N., Klaas, M., Zhou, Z., Utro, F., Cormican, P., Didion, T., Jensen, C., Mason, C.E., Barth, S., Parida, L.: Comparative exomics of Phalaris cultivars under salt stress. BMC Genomics 15(6), 1–12 (2014)
Google Scholar
Klaas, M., Haiminen, N., Grant, J., Cormican, P., Finnan, J., Krishna, S., Utro, F., Vellani, T., Parida, L., Barth, S.: Characterizing differentially expressed genes under flooding and drought stress in the biomass grasses Phalaris arundinacea and Dactylis glomerata. Under submission (2017)
Google Scholar
Karlsson, F.H., Tremaroli, V., Nookaew, I., Bergström, G., Behre, C.J., Fagerberg, B., Nielsen, J., Bäckhed, F.: Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498, 99–103 (2013)
CrossRef
Google Scholar
Ross, E.M., Moate, P.J., Marett, L.C., Cocks, B.G., Hayes, B.: Metagenomic predictions: from microbiome to complex health and environmental phenotypes in humans and cattle. PLoS ONE 8, e73056 (2013)
CrossRef
Google Scholar
Pasolli, E., Tin, D., Truong, F.K., Waldron, L., Segata, N.: Machine learning meta-analysis of large metagenomic datasets: tools and biological insights. PLoS Comput. Biol. 12(7), e1004977 (2016)
CrossRef
Google Scholar
Love, M.I., Huber, W., Anders, S.: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15(12), 550 (2014)
CrossRef
Google Scholar
Weimann, A., Mooren, K., Frank, J., Pope, P.B., Bremges, A., McHardy, A.C., Segata, N.: From genomes to phenotypes: traitar, the microbial trait analyzer. mSystems 1(6), 1–19 (2016)
Google Scholar
Ho, T.K.: Random decision forests. In: Proceedings of the Third International Conference on Document Analysis and Recognition, vol. 1, pp. 278–282 (1995)
Google Scholar
Statnikov, A., Henaff, M., Narendra, V., Konganti, K., Li, Z., Yang, L., Pei, Z., Blaser, M.J., Aliferis, C.F., Alekseyenko, A.V.: A comprehensive evaluation of multicategory classification methods for microbiomic data. Microbiome 1, 11 (2013)
CrossRef
Google Scholar
Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. JMLR 3(11), 57–82 (2013)
MATH
Google Scholar
Metcalf, J.L., Xu, Z.Z., Weiss, S., Lax, S., Van Treuren, W., Hyde, E.R., Song, S.J., Amir, A., Larsen, P., Sangwan, N., Haarmann, D., Humphrey, G.C., Ackermann, G., Thompson, L.R., Lauber, C., Bibat, A., Nicholas, C., Gebert, M.J., Petrosino, J.F., Reed, S.C., Gilbert, J.A., Lynne, A.M., Bucheli, S.R., Carter, D.O., Knight, R.: Microbial community assembly and metabolic function during mammalian corpse decomposition. Science 351(6269), 158–162 (2016)
CrossRef
Google Scholar
Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Gonzalez Peña, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, S.T., Knights, D., Koenig, J.E., Ley, R.E., Lozupone, C.A., McDonald, D., Muegge, B.D., Pirrung, M., Reeder, J., Sevinsky, J.R., Turnbaugh, P.J., Walters, W.A., Widmann, J., Yatsunenko, T., Zaneveld, J., Knight, R.: QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7(5), 335–336 (2010)
CrossRef
Google Scholar