Skip to main content

Evolving Dendritic Morphologies Highlight the Impact of Structured Synaptic Inputs on Neuronal Performance

  • Conference paper
  • First Online:
  • 877 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10477))

Abstract

Dendrites, the most conspicuous elements of neurons, extensively determine a cell’s capacity to recognise synaptic inputs. Investigating its structure and morphological properties unravels the functioning mechanism of neurons that cooperates the process of learning and memory. This research systematically generates a varying topology of dendrites in a multi-compartmental model of a neuron with passive properties and it further explores a cell’s integration ability of complex synaptic potentials. The neurons receive an equal number of binary input patterns of synaptic activity and the performance of a cell is gauged by calculating the signal to noise ratio between amplitudes of somatic voltage. The objective is to analyse the types of input pattern in combination with morphological properties that may strengthen or weaken the somatic response. Finally, an evolutionary algorithm produces a fine variety of branching structures calculating the weighted sum of synaptic inputs, further identifying the impact of membrane and morphological properties on neuronal performance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://research.kagdi.org/cns/evolving-dendritic-morphologies.

References

  1. Cooke, S.F., Bliss, T.V.P.: Plasticity in the human central nervous system. Brain 129(7), 1659–1673 (2006)

    Article  Google Scholar 

  2. Cuntz, H., Borst, A., Segev, I.: Optimization principles of dendritic structure. Theoret. Biol. Med. Model. 4(1), 1 (2007)

    Article  Google Scholar 

  3. De Sousa, G., et al.: Dendritic morphology predicts pattern recognition performance in multi-compartmental model neurons with and without active conductances. J. Comput. Neurosci. 38(2), 221–234 (2015)

    Article  MathSciNet  Google Scholar 

  4. Graham, B.P.: Pattern recognition in a compartmental model of a CA1 pyramidal neuron. Network Comput. Neural Syst. 12(4), 473–492 (2001)

    Article  Google Scholar 

  5. Gulledge, A.T., Kampa, B.M., Stuart, G.J.: Synaptic integration in dendritic trees. J. Neurobiol. 64(1), 75–90 (2005)

    Article  Google Scholar 

  6. Hebb, D.O.: The Organization of Behavior: A Neuropsychological Theory. Psychology Press, New York (2005)

    Google Scholar 

  7. Hines, M.L., Nicholas, T.: The NEURON simulation environment. Neural Comput. 9(6), 1179–1209 (1997)

    Article  Google Scholar 

  8. Ho, V.M., Lee, J.-A., Martin, K.C.: The cell biology of synaptic plasticity. Science 334(6056), 623–628 (2011)

    Article  Google Scholar 

  9. Langton, C.G.: Artificial Life: An Overview. MIT Press, Cambridge (1997)

    Google Scholar 

  10. Martínez-Cerdeño, V.: Dendrite and spine modifications in autism and related neurodevelopmental disorders in patients and animal models. Developmental Neurobiology (2016)

    Google Scholar 

  11. Takeuchi, T., Duszkiewicz, A.J., Morris, R.G.: The synaptic plasticity and memory hypothesis: encoding, storage and persistence. Phil. Trans. R. Soc. B 369(1633), 20130288 (2014)

    Article  Google Scholar 

  12. Van Pelt, J., Verwer, R.W.H.: Growth models (including terminal and segmental branching) for topological binary trees. Bull. Math. Biol. 47(3), 323–336 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wen, Q., Chklovskii, D.B.: A cost-benefit analysis of neuronal morphology. J. Neurophysiol. 99(5), 2320–2328 (2008)

    Article  Google Scholar 

  14. Williams, R.W., Herrup, K.: The control of neuron number. Annu. Rev. Neurosci. 11(1), 423–453 (1988)

    Article  Google Scholar 

Download references

Acknowledgements

I would like to express my sincere gratitude to Dr. Rene te Boekhorst for his valued support and guidance extended to me.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ziyad Kagdi .

Editor information

Editors and Affiliations

Appendix

Appendix

Fig. 9.
figure 9

Dendritic morphologies evolved after 100 evolutionary iterations to recognise random and clustered input patterns in (A) & (B) respectively.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kagdi, M.Z. (2017). Evolving Dendritic Morphologies Highlight the Impact of Structured Synaptic Inputs on Neuronal Performance. In: Bracciali, A., Caravagna, G., Gilbert, D., Tagliaferri, R. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2016. Lecture Notes in Computer Science(), vol 10477. Springer, Cham. https://doi.org/10.1007/978-3-319-67834-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67834-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67833-7

  • Online ISBN: 978-3-319-67834-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics