Module Detection Based on Significant Shortest Paths for the Characterization of Gene Expression Data

  • Daniele PepeEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10477)


The characterization of diseases in terms of perturbed gene modules was recently introduced for the analysis of gene expression data. Some approaches were proposed in literature, but most of them are inductive approaches. This means that they try to infer key gene networks directly from data, ignoring the biological information available. Here a unique method for the detection of perturbed gene modules, based on the combination of data and hypothesis-driven approaches, is described. It relies upon biological metabolic pathways and significant shortest paths evaluated by structural equation modeling (SEM). The procedure was tested on a microarray experiment concerning tuberculosis (TB) disease. The validation of the final disease module was principally done by the Wang similarity semantic index and the Disease Ontology enrichment analysis. Finally, a topological analysis of the module via centrality measures and the identification of the cut vertices allowed to unveil important nodes in the disease module network. The results obtained were promising, as shown by the detection of key genes for the characterization of the studied disease.


Disease module Structural equation modeling Gene expression data Significant shortest paths 


Funding acknowledgement

This research was funded by the MIMOmics grant of the European Union’s Seventh Framework Programme (FP7-Health-F5-2012) under the grant agreement number 305280.


  1. 1.
    Hamosh, A., Scott, A.F., Amberger, J.S., Bocchini, C.A., McKusick, V.A.: Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 33(suppl 1), D514–D517 (2005). doi: 10.1093/nar/gki033 Google Scholar
  2. 2.
    Anderson, P.W.: More is different. Science 177(4047), 393–396 (1972). doi: 10.1126/science.177.4047.393 CrossRefGoogle Scholar
  3. 3.
    Ahn, A.C., Tewari, M., Poon, C.S., Phillips, R.S.: The limits of reductionism in medicine: could systems biology offer an alternative? PLoS Med 3(6), e208 (2006). doi: 10.1371/journal.pmed0030208 CrossRefGoogle Scholar
  4. 4.
    Barabási, A.L., Gulbahce, N., Loscalzo, J.: Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12(1), 56–68 (2011). doi: 10.1038/nrg2918 CrossRefGoogle Scholar
  5. 5.
    Girvan, M., Newman, M.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002). doi: 10.1073/pnas.122653799 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Segal, E., Friedman, N., Kaminski, N., Regev, A., Koller, D.: From signatures to models: understanding cancer using microarrays. Nat. Genet. 37, S38–S45 (2005). doi: 10.1038/ng1561 CrossRefGoogle Scholar
  7. 7.
    Wang, X., Dalkic, E., Wu, M., Chan, C.: Gene module level analysis: identification to networks and dynamics. Curr. Opin. Biotechnol. 19(5), 482–491 (2008). doi: 10.1016/j.copbio.2008.07.011 CrossRefGoogle Scholar
  8. 8.
    Kline, R.B.: Principles and Practice of Structural Equation Modeling. Guilford Press (2011). doi: 10.1111/insr.12011_25
  9. 9.
    Pepe, D., Grassi, M.: Investigating perturbed pathway modules from gene expression data via structural equation models. BMC Bioinform. 15(1), 1–15 (2014). doi: 10.1186/1471-2105-15-132 CrossRefGoogle Scholar
  10. 10.
    Pepe, D., Hwan, D.J.: Estimation of dysregulated pathway regions in MPP+ treated human neuroblastoma SH-EP cells with structural equation model. BioChip J. 9(2), 131–138 (2015). doi: 10.1007/s13206-015-9206-3 CrossRefGoogle Scholar
  11. 11.
    Pepe, D., Hwan, D.J.: Comparison of perturbed pathways in two different cell models for Parkinson’s Disease with structural equation model. J. Comput. Biol. 23(2), 90–101 (2016). doi: 10.1089/cmb.2015.0156 Google Scholar
  12. 12.
    Tusher, V.G., Tibshirani, R., Chu, G.: Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. 98(9), 5116–5121 (2001). doi: 10.1073/pnas.091062498 CrossRefzbMATHGoogle Scholar
  13. 13.
    Tarca, A.L., Draghici, S., Khatri, P., Hassan, S.S., Mittal, P., Kim, J.S., Kim, C.J., Kusanovic, J.P., Romero, R.: A novel signaling pathway impact analysis. Bioinformatics 25(1), 75–82 (2009). doi: 10.1093/bioinformatics/btn577 CrossRefGoogle Scholar
  14. 14.
    Schriml, L.M., Arze, C., Nadendla, S., Chang, Y.W.W., Mazaitis, M., Felix, V., Feng, G., Kibbe, W.A.: Disease ontology: a backbone for disease semantic integration. Nucleic Acids Res. 40(D1), D940–D946 (2012). doi: 10.1093/nar/gkr972 CrossRefGoogle Scholar
  15. 15.
    Wang, J.Z., Du, Z., Payattakool, R., Philip, S.Y., Chen, C.F.: A new method to measure the semantic similarity of GO terms. Bioinformatics 23(10), 1274–1281 (2007). doi: 10.1093/bioinformatics/btm087 CrossRefGoogle Scholar
  16. 16.
    Maglott, D., Ostell, J., Pruitt, K.D., Tatusova, T.: Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res. 39(suppl 1), D52–D57 (2011). doi: 10.1093/nar/gkq1237 CrossRefGoogle Scholar
  17. 17.
    Slight, S.R., Khader, S.A.: Chemokines shape the immune responses to tuberculosis. Cytokine Growth Factor Rev. 24(2), 105–113 (2013). doi: 10.1016/j.cytogfr.2012.10.002 CrossRefGoogle Scholar
  18. 18.
    Carow, B., Reuschl, A.K., Gavier-Widén, D., Jenkins, B.J., Ernst, M., Yoshimura, A., Chambers, B.J., Rottenberg, M.E.: Critical and independent role for SOCS3 in either myeloid or T cells in resistance to Mycobacterium tuberculosis. PLoS Pathog. 9(7), e1003442 (2013). doi: 10.1371/journal.ppat.1003442 CrossRefGoogle Scholar
  19. 19.
    Mahony, R.A., Diskin, C., Stevenson, N.J.: SOCS3 revisited: a broad regulator of disease, now ready for therapeutic use? Cell. Molecular Life Sci. 1(1), 1–14 (2016). doi: 10.1007/s00018-016-2234-x Google Scholar
  20. 20.
    Sichletidis, L., Settas, L., Spyratos, D., Chloros, D., Patakas, D.: Tuberculosis in patients receiving anti-TNF agents despite chemoprophylaxis. Int. J. Tuberc. Lung Dis. 10(10), 1127–1132 (2006)Google Scholar
  21. 21.
    Song, C.H., Lee, J.S., Lee, S.H., Lim, K., Kim, H.J., Park, J.K., Paik, T.H., Jo, E.K.: Role of mitogen-activated protein kinase pathways in the production of tumor necrosis factor-α, interleukin-10, and monocyte chemotactic protein-1 by Mycobacterium tuberculosis H37Rv-infected human monocytes. J. Clin. Immunol. 23(3), 194–201 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.I-BioStatHasselt UniversityHasseltBelgium

Personalised recommendations