Skip to main content

Investigation of Time-Resolved Nozzle Interference Effects


Automotive wind tunnels still see an increasing significance in the vehicle development process. Nevertheless, the flow topology in the test sections of open jet wind tunnels is not yet understood completely. A large source for transient structures is the shear layer developing between the high velocity nozzle flow and the calmly air in the plenum.

For a better understanding, the shear layer is investigated in the symmetry plane with a multi-hole probe and PIV measurements in this paper. The analysis of the recorded data shows fluctuations with a Strouhal number of 0.46 based on the nozzle hydraulic diameter. This value matches other researches of jet flow. However, the concept of vortices separating at the nozzle edge seems to be incomplete. The PIV measurements reveal a wave structure in the shear layer at the nozzle exit. These waves release larger vortices moving along the outer boundary of the shear layer. Mode decomposition (POD) shows changing intensities of these vortices for varying wind tunnel velocities. Different flow structures are detected when delta wings are mounted to the nozzle edges.


  • Delta Wing
  • Nozzle Edge
  • Shear Layer Development
  • Multi-hole Probes
  • Scale Wind Tunnel Model

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-67822-1_7
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-67822-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.



Computational Fluid Dynamics


Research Institute of Automotive Engineering and Vehicle Engines Stuttgart


Particle Image Velocimetry


Proper Orthogonal Decomposition


  1. Mercker, E., Wiedemann, J.: On the correlation of interference effects in open jet wind tunnels. SAE Technical Paper 960671 (1996)

    Google Scholar 

  2. Mercker, E., Cooper, K., Fischer, O., Wiedemann, J.: The influence of a horizontal pressure distribution on aerodynamic drag in open and closed wind tunnels. SAE Technical Paper 2005-01-0867 (2005)

    Google Scholar 

  3. Mercker, E., Cooper, K.: A two-measurement correction for the effects of a pressure gradient on automotive, open-jet wind tunnel measurements. SAE Technical Paper 2006-01-0568 (2006)

    Google Scholar 

  4. Wickern, G., Schwartekopp, B.: Correction of nozzle gradient effects in open jet wind tunnels. SAE Technical Paper 2004-01-0669 (2004)

    Google Scholar 

  5. Hennig, A., Widdecke, N., Wiedemann, J.: A Study on Collector Interference Effects in Open Jet Wind Tunnels. Haus der Technik, Munich (2014)

    Google Scholar 

  6. Wickern, G., Heesen, W., Wallmann, S.: Wind tunnel pulsations and their active suppression. SAE Technical Paper 2000-01-0869 (2000)

    Google Scholar 

  7. Beland, O.: Buffeting suppression technologies for automotive wind tunnels tested on a scale model. In: Wiedemann, J. (ed.) Proceedings of the 6th FKFS-Conference on Progress in Vehicle Aerodynamics and Thermal Management, Stuttgart (2007)

    Google Scholar 

  8. Kuenstner, R., Potthoff, J., Essers, U.: The aero-acoustic wind tunnel of stuttgart university. SAE Technical Paper 950625 (1995)

    Google Scholar 

  9. Blumrich, R., Widdecke, N., Wiedemann, J., Michelbach, A., Wittmeier, F., Beland, O.: New FKFS technology at the full-scale aeroacoustic wind tunnel of University of Stuttgart. SAE Technical Paper 2015-01-1557 (2015)

    Google Scholar 

  10. Mercker, E.: On buoyancy and wake distortion in test sections of automotive wind tunnels. In: Wiedemann, J. (ed.) Proceedings of the 9th FKFS-Conference on Progress in Vehicle Aerodynamics and Thermal Management, Stuttgart, 2013

    Google Scholar 

  11. Schlichting, H., Gersten, K.: Boundary-Layer Theory. Springer, Heidelberg (2017)

    CrossRef  Google Scholar 

  12. Haigermoser, C., Vesely, L., Novara, M., Onorato, M.: A time-resolved particle image velocimetry investigation of a cavity flow with a thick incoming turbulent boundary layer. Phys. Fluids 20, 105101 (2008)

    CrossRef  Google Scholar 

  13. Gong, J.: Grundlagenuntersuchung zur aktiven Beeinflussung der abgelösten Strömung. Dissertation Universität Stuttgart. Springer, Wiesbaden (2015)

    Google Scholar 

  14. Rossiter, J.E.: Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. Ministry of Aviation, Aeronautical Research Council, Reports and Memoranda No. 3438 (1964)

    Google Scholar 

  15. Rennie, M., Kim, M.-S., Lee, J.-H., Kee, J.-D.: Suppression of open-jet pressure fluctuations in the Hyundai aeroacoustic wind tunnel. SAE Technical Paper 2004-01-0803 (2004)

    Google Scholar 

  16. Lumley, J.L.: The structure of inhomogeneous turbulent flow. In: Yaglom, A.M., Tatarski, V.I. (eds.) Atmospheric Turbulence and Radio Wave Propagation, Moscow (1967)

    Google Scholar 

  17. Sirovich, L.: Turbulence and the dynamics of coherent structures. Q. Appl. Math. XLV(3), 561–590 (1987)

    MathSciNet  CrossRef  Google Scholar 

  18. Meyer, K.E., Pedersen, J.M., Özkan, O.: A turbulent jet in crossflow analysed with proper orthogonal decomposition. J. Fluid Mech. 583, 199–227 (2007)

    MathSciNet  CrossRef  Google Scholar 

  19. Oberleithner, K., Sieber, M., Nayeri, C.N., Paschereit, C.O., Petz, C., Hege, H.C., Noack, B.R., Wygnanski, I.: Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: stability analysis and empirical mode construction. J. Fluid Mech. 679, 383–414 (2011)

    CrossRef  Google Scholar 

  20. Wittmeier, F.: The recent upgrade of the model scale wind tunnel of University of Stuttgart. SAE Technical Paper 2017-01-1527 (2017)

    CrossRef  Google Scholar 

  21. Raffel, M., Willert, C., Wereley, S., Kompenhans, J.: Particle Image Velocimetry. Springer, Heidelberg (2007)

    Google Scholar 

  22. Westerweel, J., Scarano, F.: Universal outlier detection for PIV data. Exp. Fluids 39, 1096–1100 (2005)

    CrossRef  Google Scholar 

  23. Adrian, R.J., Christensen, K.T., Liu, Z.-C.: Analysis and interpretation of instantaneous turbulent velocity fields. Phys. Fluids 29, 275–290 (2000)

    Google Scholar 

  24. Zaman, K.B.M.Q., Hussain, A.K.M.F.: Vortex pairing in a circular jet under controlled excitation. J. Fluid Mech. 101, 449–491 (1980)

    CrossRef  Google Scholar 

  25. Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)

    MathSciNet  CrossRef  Google Scholar 

Download references


The authors like to thank the team of the model scale wind tunnel for the support and the colleagues from the vehicle aerodynamics and thermal management department for the assisting discussions.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Christoph Schoenleber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Schoenleber, C., Kuthada, T., Widdecke, N., Wittmeier, F., Wiedemann, J. (2018). Investigation of Time-Resolved Nozzle Interference Effects. In: Wiedemann, J. (eds) Progress in Vehicle Aerodynamics and Thermal Management. FKFS 2017. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67821-4

  • Online ISBN: 978-3-319-67822-1

  • eBook Packages: EngineeringEngineering (R0)