Skip to main content

Introduction of a New Full-Scale Open Cooling Version of the DrivAer Generic Car Model

Abstract

Since the introduction of the generic aerodynamic research model DrivAer, an increasing amount of aerodynamic research and aerodynamic CAE method development activities have been based on this simplified generic car body. Due to the OpenSource nature of the model it has not only been used by academia but also by several automotive OEMs and CAE software developers. The DrivAer model has delivered high quality experimental data to permit validation of existing aerodynamic CAE capabilities and to accelerate the development of new more sophisticated numerical methods.

Vehicle aerodynamic performance is significantly influenced by the airflow through the engine bay. The current, closed cooling version of the DrivAer does not enable an assessment of the influence of the cooling airflow on the vehicle’s aerodynamic characteristics.

A new open cooling version of the DrivAer model is proposed to further expand the usability of the overall DrivAer concept. Beyond an extended usage in vehicle aerodynamics the layout of the model will allow for investigations related to powertrain cooling, heat protection, brake cooling and wind noise.

This paper focuses on the conceptual layout of the Open Cooling DrivAer model and will explain the instrumentation concept of the physical test model. Furthermore initial wind tunnel test data of the baseline configuration will be presented.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-67822-1_3
  • Chapter length: 26 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-67822-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.

Abbreviations

CC:

Closed Cooling

CCDA:

Closed Cooling DrivAer

GESS:

Ground Effect Simulation System

IDDES:

Improved Delayed Detached Eddy Simulation

LBM:

Lattice Boltzmann Method

OC:

Open Cooling

OCDA:

Open Cooling DrivAer

RANS:

Reynolds-averaged Navier-Stokes

References

  1. Ahmed, S., Ramm, G., Faltin, G.: Some salient features of the time-averaged ground vehicle wake. SAE Technical Paper 840300 (1984). https://doi.org/10.4271/840300

  2. Closed-Test-Section Wind Tunnel Blockage Corrections for Road Vehicles. SAE Report SP-1176, January 1996. ISBN: 1-56091-815-2

    Google Scholar 

  3. Windsor, S.: The effect of rear end shape an road vehicle aerodynamic drag. C427/6/031, IMechE Autotech, UK (1991)

    Google Scholar 

  4. Le Good, G., Garry, K.: On the use of reference models in automotive aerodynamics. SAE Technical Paper 2004-01-1308 (2004). https://doi.org/10.4271/2004-01-1308

  5. Heft, A., Indinger, T., Adams, N.: Introduction of a new realistic generic car model for aerodynamic investigations. SAE Technical Paper 2012-01-0168 (2012). https://doi.org/10.4271/2012-01-0168

  6. Theissen, P., Wojciak, J., Heuler, K., Demuth, R., et al.: Experimental investigation of unsteady vehicle aerodynamics under time-dependent flow conditions - Part 1. SAE Technical Paper 2011-01-0177 (2011). https://doi.org/10.4271/2011-01-0177

  7. Wojciak, J., Theissen, P., Heuler, K., Indinger, T., et al.: Experimental investigation of unsteady vehicle aerodynamics under time-dependent flow conditions – Part 2. SAE Technical Paper 2011-01-0164 (2011). https://doi.org/10.4271/2011-01-0164

  8. Mack, S., Indinger, T., Adams, N., Unterlechner, P.: The ground simulation upgrade of the large wind tunnel at the Technische Universität München. SAE Technical Paper 2012-01-0299 (2012). https://doi.org/10.4271/2012-01-0299

  9. Wojciak, J., Schnepf, B., Indinger, T., Adams, N.: Study on the capability of an open source CFD software for unsteady vehicle aerodynamics. SAE Int. J. Commer. Veh. 5(1), 196–207 (2012). https://doi.org/10.4271/2012-01-0585

    CrossRef  Google Scholar 

  10. Collin, C., Mack, S., Indinger, T., Mueller, J.: A numerical and experimental evaluation of open jet wind tunnel interferences using the DrivAer reference model. SAE Int. J. Passeng. Cars Mech. Syst. 9(2), 657–679 (2016). https://doi.org/10.4271/2016-01-1597

    CrossRef  Google Scholar 

  11. Nayeri, C., Strangfeld, C., Wieser, D., Abbassi, M.R., et al.: Experimental methods, unsteadiness and flow control in vehicle aerodynamics. In: IQPC Aerodynamics Conference, Berlin, 28th Nov 2012

    Google Scholar 

  12. Strangfeld, C., Wieser, D., Schmidt, H., Woszidlo, R., et al.: Experimental study of baseline flow characteristics for the realistic car model DrivAer. SAE Technical Paper 2013-01-1251 (2013). https://doi.org/10.4271/2013-01-1251

  13. Wieser, D., Lang, H., Nayeri, C., Paschereit, C.: Manipulation of the aerodynamic behavior of the driveAer model with fluidic oscillators. SAE Int. J. Passeng. Cars Mech. Syst. 8(2), 687–702 (2015). https://doi.org/10.4271/2015-01-1540

    CrossRef  Google Scholar 

  14. Stoll, D., Kuthada, T., Wiedemann, J., Schütz, T: Unsteady aerodynamic vehicle properties of the driveAer model in the IVK model scale wind tunnel. In: FKFS Conference on Progress in Vehicle Aerodynamics and Thermal Management, Stuttgart (2015)

    Google Scholar 

  15. Stoll, D., Schoenleber, C., Wittmeier, F., Kuthada, T., et al.: Investigation of aerodynamic drag in turbulent flow conditions. SAE Int. J. Passeng. Cars Mech. Syst. 9(2), 733–742 (2016). https://doi.org/10.4271/2016-01-1605

    CrossRef  Google Scholar 

  16. Stoll, D., Kuthada, T., Wiedemann, J.: Experimental and numerical investigation of aerodynamic drag in turbulent flow conditions. In: IMechE International Conference on Vehicle Aerodynamics, Coventry, 21–22 Sept 2016

    Google Scholar 

  17. Guilmineau, E.: Numerical simulations of flow around a realistic generic car model. SAE Int. J. Passeng. Cars Mech. Syst. 7(2), 646–653 (2014). https://doi.org/10.4271/2014-01-0607

    CrossRef  Google Scholar 

  18. Jakirlic, S., Kutej, L., Basara, B., Tropea, C.: Computational study of the aerodynamics of a realistic car model by means of RANS and hybrid RANS/LES approaches. SAE Int. J. Passeng. Cars Mech. Syst. 7(2), 559–574 (2014). https://doi.org/10.4271/2014-01-0594

    CrossRef  Google Scholar 

  19. Jakirlic, S., Kutej, L., Hanssmann, D., Basara, B. et al.: Eddy-resolving simulations of the notchback ‘DrivAer’ model: influence of underbody geometry and wheels rotation on aerodynamic behaviour. SAE Technical Paper 2016-01-1602 (2016). https://doi.org/10.4271/2016-01-1602

  20. Jungmann, J., Schütz, T., Tropea, C., Jakirlic, S.: Flow past a DrivAer body in a scaled wind tunnel: computational study by a reference to a complementary experiment. In: IMechE International Conference on Vehicle Aerodynamics, Coventry, 21–22 Sept 2016

    Google Scholar 

  21. Soares, R., Garry, K., Holt, J.: Comparison of the far-field aerodynamic wake development for three DrivAer model configurations using a cost-effective RANS simulation. SAE Technical Paper 2017-01-1514 (2017). https://doi.org/10.4271/2017-01-1514

  22. Simmonds, N., Pitman, J., Tsoutsanis, P., Jenkins, K. et al.: Complete body aerodynamic study of three vehicles. SAE Technical Paper 2017-01-1529 (2017). https://doi.org/10.4271/2017-01-1529

  23. Haag, L., Kiewat, M., Indinger, T., Blacha, T.: Numerical and experimental investigations of rotating wheel aerodynamics on the DrivAer model with engine bay flow. In: Proceedings of the ASME 2017 Fluids Engineering Division Summer Meeting, FEDSM 2017-69305

    Google Scholar 

  24. Le Good, G., Annetts, I., Quilter, S., Cross, M., Lewis, R.: The design of systematic add-on configuration changes for the DrivAer body and their aerodynamic characteristics. In: IMechE International Conference on Vehicle Aerodynamics, Coventry, 21–22. Sept 2016

    Google Scholar 

  25. Barnard, R.H.: Theoretical and experimental investigation of the aerodynamic drag due to automotive cooling systems. Proc. Inst. Mech. Eng. Part D: J. Autom. Eng. 214(8), 919–927 (2000)

    CrossRef  Google Scholar 

  26. Kuthada, T., Pfannkuchen, E., Wiedemann, J.: Evaluation of cooling air drag on a reference body. In: 5th MIRA International Vehicle Aerodynamics Conference. Warwick, UK (2004)

    Google Scholar 

  27. Kuthada, T.: Die optimierung von Pkw-Kühlluftführungs- systemen unter dem Einfluss moderner Bodensimulations- techniken; Dissertation. Universität Stuttgart (2006) ISBN: 3-8169-2664-9

    Google Scholar 

  28. Cogotti, A.: A parametric study on the ground effect of a simplified car model. SAE Technical Paper 980031 (1998). https://doi.org/10.4271/980031

  29. Baeder, D., Indinger, T., Adams, N., Decker, F.: Comparison of numerical simulations with experiments of bluff bodies including under-hood flow. SAE Technical Paper 2011-01-0171 (2011). https://doi.org/10.4271/2011-01-0171

  30. Fares, E.; Jelic, S.; Kuthada, T., Schröck, D.: Lattice boltzmann thermal flow simulation and measurements of a modified SAE model with heated plug FEDSM2006-98467. ASME (2006)

    Google Scholar 

  31. Kuthada, T., Wiedemann, J.: Investigations in a cooling air flow system under the influence of road simulation. SAE Technical Paper 2008-01-0796 (2008). https://doi.org/10.4271/2008-01-0796

  32. Wittmeier, F., Kuthada, T.: Open grille DrivAer model - first results. SAE Int. J. Passeng. Cars Mech. Syst. 8(1), 252–260 (2015). https://doi.org/10.4271/2015-01-1553

    CrossRef  Google Scholar 

  33. Wittmeier, F.: The recent upgrade of the model scale wind tunnel of university of Stuttgart. SAE Int. J. Passeng. Cars Mech. Syst. 10(1), 203–213 (2017). https://doi.org/10.4271/2017-01-1527

    CrossRef  Google Scholar 

  34. Kuthada, T., Wittmeier, F., Bock, B., Schoenleber, C., et al.: The effects of cooling air on the flow field around a vehicle. SAE Int. J. Passeng. Cars Mech. Syst. 9(2), 723–732 (2016). https://doi.org/10.4271/2016-01-1603

    CrossRef  Google Scholar 

  35. Kuthada, T.: A review of some cooling air flow measurement techniques for model scale, full scale and CFD. SAE Int. J. Passeng. Cars Mech. Syst. 6(1), 88–96 (2013). https://doi.org/10.4271/2013-01-0598

    CrossRef  Google Scholar 

  36. Cogotti, A.: The new moving ground system of the pininfarina wind tunnel. SAE Technical Paper 2007-01-1044 (2007). https://doi.org/10.4271/2007-01-1044

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burkhard Hupertz .

Editor information

Editors and Affiliations

Appendix

Appendix

See Figs. 24 and 25.

Fig. 24.
figure 24

Open Cooling DrivAer wind tunnel test data reporting template

Fig. 25.
figure 25

Open Cooling DrivAer CFD result reporting template

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Hupertz, B. et al. (2018). Introduction of a New Full-Scale Open Cooling Version of the DrivAer Generic Car Model. In: Wiedemann, J. (eds) Progress in Vehicle Aerodynamics and Thermal Management. FKFS 2017. Springer, Cham. https://doi.org/10.1007/978-3-319-67822-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67822-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67821-4

  • Online ISBN: 978-3-319-67822-1

  • eBook Packages: EngineeringEngineering (R0)