Skip to main content

Introduction to Part IV

  • Chapter
  • First Online:
A Richer Picture of Mathematics
  • 2561 Accesses

Abstract

When looking at the early development of relativity theory, one finds an astonishing number of contributions by mathematicians, some of which deeply influenced the work of leading theoretical physicists. Within the context of special relativity, Hermann Minkowski’s writings come immediately to mind (Walter 2008). Klein and Hilbert followed Minkowski’s ideas from their infancy, and both pursued some of their consequences after the latter’s premature death in January 1909. Two other figures with close ties to Göttingen, Max Born and Arnold Sommerfeld, were both instrumental in elaborating Minkowski’s 4-dimensional approach for physicists (Walter 2007). Born had been Minkowski’s assistant for a brief time, and so he was given the task of publishing his mentor’s final uncompleted work on electrodynamics (Staley 2008). Sommerfeld was since 1906 the head of a leading school for theoretical physics in Munich, where he afterward played a key role in promoting special relativity theory in Germany, including mathematical aspects of the theory (Eckert 2013).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The literature on how Einstein found his field equations is by now vast; see the essays in Renn (2007), in particular (Janssen and Renn 2007). For an overview, see Janssen and Renn (2015) and the references cited therein.

  2. 2.

    The same point can be made for special relativity, as nicely illustrated in Walter (1999).

  3. 3.

    His contacts with Klein intensified during the years leading up to the outbreak of World War I when Weyl was teaching as a Privatdozent in Göttingen. During the winter semester of 1911–1912 he lectured on Riemann surfaces, one of Klein’s favorite subjects, and this course led him to publish Die Idee der Riemannschen Fläche, the book that grounded this theory by introducing the modern notion of a (two-dimensional) complex manifold. Nevertheless, Weyl stressed his indebtedness to Klein’s booklet of 1882, Über Riemanns Theorie der algebraischen Funktionen und ihrer Integrale. According to Weyl, it was Klein’s more general conception of a Riemann surface—in which he replaced the complex plane by an arbitrary closed surface—that gave the modern theory its decisive vitality and power (Weyl 1913, iv–v).

References

  • Brading, Katherine, and Thomas Ryckman. 2008. Hilbert’s “Foundations of Physics”: Gravitation and Electromagnetism within the Axiomatic Method. Studies in History and Philosophy of Modern Physics 29: 102–153.

    Article  MathSciNet  MATH  Google Scholar 

  • Christoffel, Erwin B. 1869. Ueber die Transformation der homogenen Differentialausdrücke zeiten Grades. Journal für die reine und angewandte Mathematik 70: 46–70.

    Google Scholar 

  • Cogliati, Alberto. 2014. Riemann's Commentatio Mathematica, a Reassessment. Revue d'histoire des mathématiques 20(1), 73--94.

    Google Scholar 

  • Corry, Leo. 2004. David Hilbert and the Axiomatization of Physics (1898–1918): From Grundlagen der Geometrie to Grundlagen der Physik. Dordrecht: Kluwer.

    Book  MATH  Google Scholar 

  • Corry, Leo, Jürgen Renn, and John Stachel. 1997. Belated Decision in the Hilbert--Einstein Priority Dispute. Science 278: 1270–1273.

    Article  MathSciNet  MATH  Google Scholar 

  • Darrigol, Olivier. 2000. Electrodynamics from Ampère to Einstein. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • ———. 2015. The Mystery of Riemann’s Curvature. Historia Mathematica 42: 47–83.

    Article  MathSciNet  MATH  Google Scholar 

  • Sitter, Willem de. 1917a. On the Relativity of Inertia. Remarks Concerning Einstein’s Latest Hypothesis, Koninklijke Akademie van Wetenschappen te Amsterdam, Proceedings, 19 (1916–17): 1217–1225.

    Google Scholar 

  • ———. 1917b. On the Curvature of Space, Koninklijke Akademie van Wetenschappen te Amsterdam, Proceedings 20 (1917–18): 229–243.

    Google Scholar 

  • Earman, John, and Michel Janssen. 1993. Einstein’s Explanation of the Motion of Mercury’s Perihelion. In The Attraction of Gravitation: New Studies in the History of General Relativity, ed. John Earman et al., 129–172. Boston: Birkhäuser.

    Google Scholar 

  • Eckert, Michael. 2013. Arnold Sommerfeld: Science, Life and Turbulent Times 1868–1951. New York: Springer.

    Book  MATH  Google Scholar 

  • Einstein, Albert. 1905. Zur Elektrodynamik bewegter Körper. Annalen der Physik 17: 891–921.

    Google Scholar 

  • ———. 1914. Die formale Grundlage der allgemeinen Relativitätstheorie, Königlich Preußische Akademie der Wissenschaften, Sitzungsberichte: 1030–1085; Reprinted in (Einstein-CPAE 6 1996, 72–130).

    Google Scholar 

  • ———. 1915a, Zur allgemeinen Relativitätstheorie, Königlich Preußische Akademie der Wissenschaften, Sitzungsberichte, 778–786; Reprinted in (Einstein-CPAE 6 1996, 214–224).

    Google Scholar 

  • ———. 1915b. Zur allgemeinen Relativitätstheorie. (Nachtrag), Königlich Preußische Akademie der Wissenschaften, Sitzungsberichte (1915), 799–801; Reprinted in (Einstein-CPAE 6 1996, 225–229).

    Google Scholar 

  • ———. 1915c. Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie, Königlich Preußische Akademie der Wissenschaften, Sitzungsberichte (1915), 831–839; Reprinted in (Einstein-CPAE 6 1996, 233–243).

    Google Scholar 

  • ———. 1915d. Die Feldgleichungen der Gravitation, Königlich Preußische Akademie der Wissenschaften, Sitzungsberichte (1915), 844–847; Reprinted in (Einstein-CPAE 6 1996, 244–249).

    Google Scholar 

  • ———. 1917. Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie, Königlich Preußische Akademie der Wissenschaften (Berlin). Sitzungsberichte (1917), 142–152; reprinted in (Einstein-CPAE 6 1996, 540–552).

    Google Scholar 

  • Einstein, Albert and Marcel Grossmann. 1913. Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der Gravitation (Leipzig: Teubner, 1913); reprinted in (Einstein-CPAE 4 1995, 302–343).

    Google Scholar 

  • Einstein-CPAE 6. 1996. In The Collected Papers of Albert Einstein, Vol. 6: The Berlin Years: Writings, 1914–1917, ed. A.J. Kox et al. Princeton: Princeton University Press.

    Google Scholar 

  • Einstein-CPAE 8A. 1998. In The Collected Papers of Albert Einstein: the Berlin Years: Correspondence, 1914–1917, ed. Robert Schulmann et al. Princeton: Princeton University Press.

    Google Scholar 

  • Eisenstaedt, Jean. 1989. The Early Interpretation of the Schwarzschild Solution. In Einstein and the History of General Relativity, Einstein Studies, ed. D. Howard and J. Stachel, vol. 1, 213–233. Basel: Birkhäuser.

    Google Scholar 

  • Goenner, Hubert. 1993. The Reaction to Relativity Theory I: The Anti-Einstein Campaign in Germany in Germany. Science in Context 6: 107–133.

    Article  MathSciNet  Google Scholar 

  • ———. 2001. Weyl’s Contributions to Cosmology, in (Scholz 2001b, 105–137).

    Google Scholar 

  • Hentschel, Klaus. 1990. Interpretationen und Fehlinterpretationen der speziellen und der allgemeinen Relativitätstheorie durch Zeitgenossen Albert Einsteins. Basel: Birkhäuser.

    MATH  Google Scholar 

  • ———. 1997. The Einstein Tower: An Intertexture of Dynamic Construction, Relativity Theory, and Astronomy. Palo Alto: Stanford University Press.

    MATH  Google Scholar 

  • Hilbert, David. 1915. Die Grundlagen der Physik. (Erste Mitteilung), Königliche Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-physikalische Klasse. Nachrichten, 395–407.

    Google Scholar 

  • Janssen, Michel. 2009. Drawing the Line between Kinematics and Dynamics in Special Relativity. Studies in History and Philosophy of Modern Physics 40: 26–52.

    Article  MathSciNet  MATH  Google Scholar 

  • ———. 2012. The Twins and the Bucket: How Einstein Made Gravity rather than Motion Relative in General Relativity. Studies in History and Philosophy of Modern Physics 43: 159–175.

    Article  MathSciNet  MATH  Google Scholar 

  • ———. 2014. No Success Like Failure …’: Einstein’s Quest for General Relativity, 1907– 1920. In The Cambridge Companion to Einstein, ed. Michel Janssen and Christoph Lehner, 167–227. Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Janssen, Michel, and Mathew Mecklenburg. 2006. From Classical to Relativistic Mechanics: Electromagnetic Models of the Electron. In Interactions: Mathematics, Physics and Philosophy, 1860–1930, ed. Jesper Lützen et al., 65–134. New York: Springer.

    Chapter  Google Scholar 

  • Janssen, Michel and Jürgen Renn. 2007. Untying the knot: How Einstein found his way back to field equations discarded in the Zurich notebook, in (Renn 2007, vol. 2, 839–925).

    Google Scholar 

  • Janssen, Michel, and Jürgen Renn. 2015. Arch and scaffold: How Einstein found his field equations. Physics Today, November: 30–36.

    Google Scholar 

  • Klein, Felix. 1921. Gesammelte Mathematische Abhandlungen. Bd. 1 ed. Berlin: Springer.

    Book  Google Scholar 

  • ———. 1927. Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhundert, hrsg. von R. Courant u. St. Cohn-Vossen, Bd. 2, Berlin: Julius Springer.

    Google Scholar 

  • Kosmann-Schwarzbach, Yvette. 2004. Les Théorèmes de Noether. Invariance et lois de conservation au XXe siècle. Paris: Les Éditions de L’école Polytechnique.

    Google Scholar 

  • Minkowski, Hermann. 1909. Raum und Zeit. Physikalische Zeitschrift 10: 104–111.

    Google Scholar 

  • ———. 1915. Das Relativitätsprinzip. Annalen der Physik 352 (15): 927–938.

    Google Scholar 

  • ———. 1973. In Hermann Minkowski, Briefe an David Hilbert, ed. von Hans Zassenhaus and L. Rüdenberg. New York: Springer.

    Google Scholar 

  • Newcomb, Simon. 1877. Elementary theorems relating to the Geometry of a space of three dimensions and of uniform positive curvature in the fourth dimension. Journal für die reine und angewandte Mathematik 83: 293–299.

    MathSciNet  MATH  Google Scholar 

  • Noether, Emmy. 1918. Invariante Variationsprobleme, Königliche Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-physikalische Klasse. Nachrichten, 235–257.

    Google Scholar 

  • Pais, Abraham. 1982. Subtle is the Lord...’ The Science and the Life of Albert Einstein. Oxford: Clarendon Press.

    Google Scholar 

  • Pauli, Wolfgang. 1921/1981. Relativitätstheorie, in Encyklopädie der mathematischen Wissenschaften, mit Einschluss ihrer Anwendungen. Arnold Sommerfeld, ed. vol. 5, Physik, part 2 (Leipzig: Teubner, 1921), 539–775. W. Pauli, Theory of Relativity. Trans. G. Field. (New York: Dover, 1981).

    Google Scholar 

  • Pauli. 1979. In Wolfgang Pauli. Wissenschaftlicher Briefwechsel, ed. A. Hermann, K.V. Meyenn, and V. Weisskopf, Bd. 1 ed. New York, Springer.

    Google Scholar 

  • Reid, Constance. 1976. Courant in Göttingen and New York: the Story of an Improbable Mathematician. New York: Springer.

    MATH  Google Scholar 

  • Renn, Jürgen, ed. 2007. The Genesis of General Relativity. Vol. 4. Dordrecht: Springer.

    MATH  Google Scholar 

  • Renn, Jürgen and John Stachel. 2007. Hilbert’s foundation of physics: From a theory of everything to a constituent of general relativity, in (Renn 2007, vol. 4, 858–973).

    Google Scholar 

  • Richardson, R.G.D. 1908. The Cologne Meeting of the Deutsche Mathematiker-Vereinigung. Bulletin of the American Mathematical Society 15: 117–119.

    Article  MathSciNet  MATH  Google Scholar 

  • Riemann, Bernhard. 1868. Ueber die Hypothesen, welche der Geometrie zu Grunde liegen. Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen 13: 133–150.

    Google Scholar 

  • Rowe, David E. 1986. “Jewish Mathematics” at Göttingen in the Era of Felix Klein. Isis 77: 422–449.

    Article  MathSciNet  MATH  Google Scholar 

  • ———. 1999. The Göttingen Response to General Relativity and Emmy Noether’s Theorems, in (Gray 1999, 189–233).

    Google Scholar 

  • ———. 2001. Einstein meets Hilbert: At the Crossroads of Physics and Mathematics. Physics in Perspective 3: 379–424.

    Article  MathSciNet  MATH  Google Scholar 

  • ———. 2002. Einstein’s Encounters with German Anti-Relativists, in (Einstein-CPAE 7 2002, 101–113).

    Google Scholar 

  • ———. 2004. Making Mathematics in an Oral Culture: Göttingen in the Era of Klein and Hilbert. Science in Context 17 (1/2): 85– 129.

    Article  MathSciNet  MATH  Google Scholar 

  • ———. 2006. Einstein’s Allies and Enemies: Debating Relativity in Germany, 1916–1920, in (Hendricks 2006, 231–280).

    Google Scholar 

  • ———. 2012. Einstein and Relativity. What Price Fame? Science in Context 25 (2): 197–246.

    Article  MathSciNet  Google Scholar 

  • Sauer, Tilman. 1999. The Relativity of Discovery: Hilbert’s First Note on the Foundations of Physics. Archive for History of Exact Sciences 53: 529–575.

    MathSciNet  MATH  Google Scholar 

  • ———. 2005. Einstein equations and Hilbert action: What is missing on page 8 of the proofs for Hilbert’s first communication on the foundations of physics? Archive for History of Exact Sciences 59: 577–590.

    Article  MathSciNet  MATH  Google Scholar 

  • ———. 2015. Marcel Grossmann and his contribution to the general theory of relativity, in Proceedings of the 13th Marcel Grossmann meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories, July 2015, Robert T. Jantzen, et al., eds., Singapore: World Scientific, 2015, 456–503.

    Google Scholar 

  • Schemmel, Matthias. 2007. The Continuity between Classical and Relativistic Cosmology in the Work of Karl Schwarzschild, in (Renn 2007, vol. 3, 155–182).

    Google Scholar 

  • Scholz, Erhard. 2001a. Weyls Infinitesimalgeometrie, 1917–1925, in (Scholz 2001b, 48–104).

    Google Scholar 

  • ———. 2001b. Hermann Weyl’s Raum-Zeit-Materie and a General Introduction to his Scientific Work. Basel: Birkhäuser.

    Book  MATH  Google Scholar 

  • Schwarzschild, Karl. 1900. Über das zulässige Krümmungsmaß des Raumes, Vierteljahresschrift der astronomischen Gesellschaft, 35. Jahrgang.

    Google Scholar 

  • ———. 1916a. Über das Gravitationsfeld eines Massenpunktes nach der Einstein’schen Theorie, Sitzungsberichte der Königlich-Preussischen Akademie der Wissenschaften, 189–196.

    Google Scholar 

  • ———. 1916b. Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit. Sitzungsberichte der Königlich-Preussischen Akademie der Wissenschaften: 424–434.

    Google Scholar 

  • Seelig, Carl. 1956. Albert Einstein: A Documentary Biography. Staples Press.

    Google Scholar 

  • Staley, Richard. 2008. Einstein’s Generation: The Origins of the Relativity Revolution. Chicago: University of Chicago Press.

    MATH  Google Scholar 

  • Thorne, Kip. 1994. Black Holes & Time Warps: Einstein’s Outrageous Legacy. New York: Norton.

    MATH  Google Scholar 

  • Tollmien, Cordula. 1991. Die Habilitation von Emmy Noether an der Universität Göttingen. NTM Zeitschrift für Geschichte der Naturwissenschaften, Technik und Medizin 28: 13–32.

    Google Scholar 

  • van Dongen, Jeroen. 2007. Reactionaries and Einstein’s fame: ‘German Scientists for the Preservation of Pure Science,’ relativity and the Bad Nauheim conference. Physics in Perspective 9: 212–230.

    Article  MathSciNet  Google Scholar 

  • Vermeil, Hermann. 1917. Notiz über das mittlere Krümmungsmass einer n-fach ausgedehnten Riemann’schen Mannigfaltigkeit, Königliche Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-physikalische Klasse. Nachrichten: 334–344.

    Google Scholar 

  • von Laue, Max. 1921. Die Relativitätstheorie, zweiter Band: Die allgemeine Relativitätstheorie und Einsteins Lehre von der Schwerkraft. Braunschweig: Vieweg.

    MATH  Google Scholar 

  • Walter, Scott. 1999. The Non-Euclidean Style of Minkowskian Geometry, in (Gray 1999, 91–126).

    Google Scholar 

  • ———. 2007. Breaking in the 4- Vectors: the Four-Dimensional Movement in Gravitation, 1905–1910, in (Renn 2007, vol. 3, 193–252).

    Google Scholar 

  • ———. 2008. Hermann Minkowski’s Approach to Physics. Mathematische Semesterberichte 55: 213–235.

    Google Scholar 

  • Wazeck, Milena. 2009/2014. Einsteins Gegner: Die öffentliche Kontroverse um die Relativitätstheorie in den 1920er Jahren, Berlin: Campus 2009; Einstein’s Opponents. The Public Controversy about the Theory of Relativity in the 1920s, Cambridge: Cambridge University Press.

    Google Scholar 

  • Weyl, Hermann. 1913. Die Idee der Riemannschen Fläche. Leipzig: Teubner.

    MATH  Google Scholar 

  • ———. 1918. Raum - Zeit - Materie. Vorlesungen über allgemeine Relativitätstheorie. 1st ed. Berlin: Springer.

    MATH  Google Scholar 

  • ———. 1921/1922. Raum–Zeit–Materie. Vorlesungen über allgemeine Relativitätstheorie, 4th rev. ed. (Berlin: Springer, 1921); H. Weyl, Space—Time—Matter. Trans. Henry L. Brose. London: Methuen, 1922.

    Google Scholar 

  • ———. 1985. Axiomatic versus Constructive Procedures in Mathematics, edited by Tito Tonietti. Mathematical Intelligencer 7 (4): 10–17.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rowe, D.E. (2018). Introduction to Part IV. In: A Richer Picture of Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-67819-1_17

Download citation

Publish with us

Policies and ethics