Advertisement

Private Verification of Access on Medical Data: An Initial Study

  • Thaís Bardini Idalino
  • Dayana SpagnueloEmail author
  • Jean Everson Martina
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10436)

Abstract

Patient-centered medical systems promote empowerment of patients, who can decide on the accesses and usage of their personal data. To inspire a sense of trust and encourage the adoption of such systems, it is desired to allow one to verify whether the system has acted in accordance with the patients’ preferences. However, it is argued that even audit logs and usage policies, normally used when verifying such property, may already be enough for one to learn sensitive information, e.g., the medical specialists a given patient has visited in the past. This is not only damaging for the patients, but is also against the interests of the medical system, which may lose back the trust earned and gain a bad reputation. Verifiability should not come at the expense of patients’ privacy. It is, therefore, imperative that these systems take necessary precautions towards patient’s information when providing means for verifiability. In this work we study how to realize that. In particular, we explore how searchable encryption techniques could be applied to allow the verification of systems in a private fashion, providing no information on patient’s sensitive data.

Keywords

Verifiability Audit Compliance Privacy Searchable encryption Patient-centered medical systems 

Notes

Acknowledgments

Thais Bardini Idalino acknowledges funding granted from CNPq-Brazil [233697/2014-4]. Dayana Spagnuelo’s research is supported by the Luxembourg National Research Fund (FNR), AFR project 7842804 - TYPAMED. The authors would also like to thank Dr. Gabriele Lenzini and Prof. Peter Y.A. Ryan for contributing to this work with relevant discussions and valuable advice.

References

  1. 1.
    Barker, E.: NIST Special Publication 800-57 Part 1 Revision 4—Recommendation for Key Management (Part 1: General) (2016)Google Scholar
  2. 2.
    Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-24676-3_30CrossRefGoogle Scholar
  3. 3.
    Boneh, D., Raghunathan, A., Segev, G.: Function-private identity-based encryption: hiding the function in functional encryption. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 461–478. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40084-1_26CrossRefzbMATHGoogle Scholar
  4. 4.
    Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-70936-7_29CrossRefGoogle Scholar
  5. 5.
    Bösch, C., Hartel, P., Jonker, W., Peter, A.: A survey of provably secure searchable encryption. ACM Comput. Surv. (CSUR) 47(2), 18 (2015)Google Scholar
  6. 6.
    Bösch, C., Tang, Q., Hartel, P., Jonker, W.: Selective document retrieval from encrypted database. In: Gollmann, D., Freiling, F.C. (eds.) ISC 2012. LNCS, vol. 7483, pp. 224–241. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33383-5_14CrossRefGoogle Scholar
  7. 7.
    Butin, D., Le Métayer, D.: Log analysis for data protection accountability. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 163–178. Springer, Cham (2014). doi: 10.1007/978-3-319-06410-9_12CrossRefGoogle Scholar
  8. 8.
    Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-scalable searchable symmetric encryption with support for boolean queries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 353–373. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40041-4_20CrossRefGoogle Scholar
  9. 9.
    Chang, Y.-C., Mitzenmacher, M.: Privacy preserving keyword searches on remote encrypted data. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005). doi: 10.1007/11496137_30CrossRefGoogle Scholar
  10. 10.
    Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption: improved definitions and efficient constructions. J. Comput. Secur. 19(5), 895–934 (2011)CrossRefGoogle Scholar
  11. 11.
    Dreier, J., Giustolisi, R., Kassem, A., Lafourcade, P., Lenzini, G.: A framework for analyzing verifiability in traditional and electronic exams. In: Lopez, J., Wu, Y. (eds.) ISPEC 2015. LNCS, vol. 9065, pp. 514–529. Springer, Cham (2015). doi: 10.1007/978-3-319-17533-1_35CrossRefGoogle Scholar
  12. 12.
    Dreier, J., Jonker, H., Lafourcade, P.: Defining verifiability in e-auction protocols. In: Proceedings of the 8th ACM SIGSAC Symposium on Information, Computer and Communications Security, pp. 547–552. ACM (2013)Google Scholar
  13. 13.
    Fisch, B.A., Vo, B., Krell, F., Kumarasubramanian, A., Kolesnikov, V., Malkin, T., Bellovin, S.M.: Malicious-client security in blind seer: a scalable private DBMS. In: 2015 IEEE Symposium on Security and Privacy (SP), pp. 395–410. IEEE (2015)Google Scholar
  14. 14.
    Flores, A.E., Vergara, V.M.: Functionalities of open electronic health records system: a follow-up study. In: 6th International Conference on Biomedical Engineering and Informatics, pp. 602–607. IEEE (2013)Google Scholar
  15. 15.
    Gajanayake, R., Sahama, T.R., Lane, B., Grunwell, D.: Designing an information accountability framework for eHealth. In: IEEE Healthcom 2013 15th International Conference on E-Health Networking, Application and Services. Instituto Superior de Ciências Sociais e Políticas - Technical University of Lisbon, Lisbon, Portugal, June 2013. https://eprints.qut.edu.au/60690/
  16. 16.
    Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford University (2009)Google Scholar
  17. 17.
    Goh, E.J., et al.: Secure indexes. IACR Cryptology ePrint Archive 2003, 216 (2003). http://eprint.iacr.org/2003/216
  18. 18.
    Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious RAMs. J. ACM (JACM) 43(3), 431–473 (1996)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Golle, P., Staddon, J., Waters, B.: Secure conjunctive keyword search over encrypted data. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 31–45. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-24852-1_3CrossRefGoogle Scholar
  20. 20.
    Grunwell, D., Gajanayake, R., Sahama, T.: The security and privacy of usage policies and provenance logs in an information accountability framework. In: Proceedings of the Eighth Australasian Workshop on Health Informatics and Knowledge Management (HIKM2015), vol. 164, pp. 33–40. Australian Computer Society (2015)Google Scholar
  21. 21.
    Haas, S., Wohlgemuth, S., Echizen, I., Sonehara, N., Müller, G.: Aspects of privacy for electronic health records. Int. J. Med. Inf. 80(2), e26–e31 (2011)CrossRefGoogle Scholar
  22. 22.
    Hu, V.C., Ferraiolo, D., Kuhn, D.R.: Assessment of access control systems. US Department of Commerce, National Institute of Standards and Technology (2006)Google Scholar
  23. 23.
    Kamara, S., Moataz, T.: Boolean searchable symmetric encryption with worst-case sub-linear complexity. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 94–124. Springer, Cham (2017). doi: 10.1007/978-3-319-56617-7_4CrossRefGoogle Scholar
  24. 24.
    King, J.T., Smith, B., Williams, L.: Modifying without a trace: general audit guidelines are inadequate for open-source electronic health record audit mechanisms. In: Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium, pp. 305–314. ACM (2012)Google Scholar
  25. 25.
    Kremer, S., Ryan, M., Smyth, B.: Election verifiability in electronic voting protocols. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp. 389–404. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15497-3_24CrossRefGoogle Scholar
  26. 26.
    Kurosawa, K.: Garbled searchable symmetric encryption. In: Financial Cryptography, vol. 2014, pp. 234–251 (2014)Google Scholar
  27. 27.
    Marshall, G.: Security audit and access accountability message XML. Technical report, RFC 3881 (2004)Google Scholar
  28. 28.
    Microsoft: Microsoft Privacy Statement (2017). https://privacy.microsoft.com/en-gb/privacystatement. Accessed 15 May 2017
  29. 29.
    Moataz, T., Shikfa, A.: Boolean symmetric searchable encryption. In: Proceedings of the 8th ACM SIGSAC symposium on Information, Computer and Communications Security, pp. 265–276. ACM (2013)Google Scholar
  30. 30.
    Pappas, V., Krell, F., Vo, B., Kolesnikov, V., Malkin, T., Choi, S.G., George, W., Keromytis, A., Bellovin, S.: Blind seer: a scalable private DBMS. In: 2014 IEEE Symposium on Security and Privacy (SP), pp. 359–374. IEEE (2014)Google Scholar
  31. 31.
    Reuben, J., Martucci, L.A., Fischer-Hübner, S.: Automated log audits for privacy compliance validation: a literature survey. In: Aspinall, D., Camenisch, J., Hansen, M., Fischer-Hübner, S., Raab, C. (eds.) Privacy and Identity 2015. IAICT, vol. 476, pp. 312–326. Springer, Cham (2016). doi: 10.1007/978-3-319-41763-9_21CrossRefGoogle Scholar
  32. 32.
    Røstad, L.: An initial model and a discussion of access control in patient controlled health records. In: 2008 Third International Conference on Availability, Reliability and Security, ARES 2008, pp. 935–942. IEEE (2008)Google Scholar
  33. 33.
    Seneviratne, O., Kagal, L.: Enabling privacy through transparency. In: 2014 Twelfth Annual International Conference on Privacy, Security and Trust (PST), pp. 121–128. IEEE (2014)Google Scholar
  34. 34.
    Shi, E., Bethencourt, J., Chan, T.H., Song, D., Perrig, A.: Multi-dimensional range query over encrypted data. In: 2007 IEEE Symposium on Security and Privacy, SP 2007, pp. 350–364. IEEE (2007)Google Scholar
  35. 35.
    Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted data. In: 2000 IEEE Symposium on Security and Privacy, S&P 2000, Proceedings, pp. 44–55. IEEE (2000)Google Scholar
  36. 36.
    Spagnuelo, D., Lenzini, G.: Transparent medical data systems. J. Med. Syst. 41(1), 8 (2017)CrossRefGoogle Scholar
  37. 37.
    Waters, B.R., Balfanz, D., Durfee, G., Smetters, D.K.: Building an encrypted and searchable audit log. NDSS 4, 5–6 (2004)Google Scholar
  38. 38.
    Wickramage, C., Sahama, T., Fidge, C.: Anatomy of log files: implications for information accountability measures. In: 2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom), pp. 1–6. IEEE (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Thaís Bardini Idalino
    • 1
  • Dayana Spagnuelo
    • 2
    Email author
  • Jean Everson Martina
    • 3
  1. 1.School of Electrical Engineering and Computer ScienceUniversity of OttawaOttawaCanada
  2. 2.Interdisciplinary Centre for Security Reliability and Trust (SnT)University of LuxembourgLuxembourgLuxembourg
  3. 3.Departamento de Informática e EstatísticaUniversidade Federal de Santa CatarinaFlorianópolisBrazil

Personalised recommendations