Advertisement

Order-Preserving Encryption Using Approximate Integer Common Divisors

  • James DyerEmail author
  • Martin Dyer
  • Jie Xu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10436)

Abstract

We present a new, but simple, randomised order-preserving encryption (OPE) scheme based on the general approximate common divisor problem (GACDP). This appears to be the first OPE scheme to be based on a computational hardness primitive, rather than a security game. This scheme requires only O(1) arithmetic operations for encryption and decryption. We show that the scheme has optimal information leakage under the assumption of uniformly distributed plaintexts, and we indicate that this property extends to some non-uniform distributions. We report on an extensive evaluation of our algorithms. The results clearly demonstrate highly favourable execution times in comparison with existing OPE schemes.

Keywords

Order-preserving encryption Symmetric cryptography Cloud computing Data analytics 

References

  1. 1.
    Agrawal, R., et al.: Order preserving encryption for numeric data. In: Proceedings of the SIGMOD 2004, pp. 563–574. ACM (2004)Google Scholar
  2. 2.
    Bellare, M., et al.: A concrete security treatment of symmetric encryption. In: Proceedings of the FOCS 1997, pp. 394–403. IEEE (1997)Google Scholar
  3. 3.
    Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998). doi: 10.1007/BFb0055718CrossRefGoogle Scholar
  4. 4.
    Boelter, T., et al.: A secure one-roundtrip index for range queries. Cryptology ePrint Archive: 2016/568 (2016)Google Scholar
  5. 5.
    Boldyreva, A., Chenette, N., O’Neill, A.: Order-preserving encryption revisited: improved security analysis and alternative solutions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 578–595. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22792-9_33CrossRefGoogle Scholar
  6. 6.
    Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving symmetric encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 224–241. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-01001-9_13CrossRefGoogle Scholar
  7. 7.
    Boneh, D., Lewi, K., Raykova, M., Sahai, A., Zhandry, M., Zimmerman, J.: Semantically secure order-revealing encryption: multi-input functional encryption without obfuscation. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 563–594. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46803-6_19CrossRefGoogle Scholar
  8. 8.
    Chen, Y., Nguyen, P.Q.: Faster algorithms for approximate common divisors: breaking fully-homomorphic-encryption challenges over the integers. Cryptology ePrint Archive: 2011/436 (2011)Google Scholar
  9. 9.
    Chen, Y., Nguyen, P.Q.: Faster algorithms for approximate common divisors: breaking fully-homomorphic-encryption challenges over the integers. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 502–519. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-29011-4_30CrossRefGoogle Scholar
  10. 10.
    Chenette, N., Lewi, K., Weis, S.A., Wu, D.J.: Practical order-revealing encryption with limited leakage. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 474–493. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-52993-5_24CrossRefzbMATHGoogle Scholar
  11. 11.
    Cohn, H., Heninger, N.: Approximate common divisors via lattices. In: Proceedings of the ANTS-X, vol. 1, pp. 271–293. Mathematical Sciences Publishers (2012)Google Scholar
  12. 12.
    Coron, J.-S., Mandal, A., Naccache, D., Tibouchi, M.: Fully homomorphic encryption over the integers with shorter public keys. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 487–504. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22792-9_28CrossRefGoogle Scholar
  13. 13.
    Dautelle, J.-M.: JScience. Version 4.3.1, September 2014. http://jscience.org
  14. 14.
    Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13190-5_2CrossRefGoogle Scholar
  15. 15.
    Durak, F.B., et al.: What else is revealed by order-revealing encryption? In: Proceedings of the CCS 2016, pp. 1155–1166. ACM (2016)Google Scholar
  16. 16.
    Dyer, J., et al.: Practical homomorphic encryption over the integers. arXiv:1702.07588 [cs.CR], February 2017
  17. 17.
    Galbraith, S.D., et al.: Algorithms for the approximate common divisor problem. LMS J. Comput. Math. 19(A), 58–72 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Howgrave-Graham, N.: Approximate integer common divisors. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 51–66. Springer, Heidelberg (2001). doi: 10.1007/3-540-44670-2_6CrossRefGoogle Scholar
  19. 19.
    Kadhem, H., et al.: MV-OPES: multivalued-order preserving encryption scheme: a novel scheme for encrypting integer value to many different values. IEICE Trans. Inf. Syst. 93(9), 2520–2533 (2010)CrossRefGoogle Scholar
  20. 20.
    Kerschbaum, F.: Frequency-hiding order-preserving encryption. In: Proceedings of the CCS 2015, pp. 656–667. ACM (2015)Google Scholar
  21. 21.
    Kerschbaum, F., Schroepfer, A.: Optimal average-complexity ideal-security order-preserving encryption. In: Proceedings of the CCS 2014, pp. 275–286. ACM (2014)Google Scholar
  22. 22.
    Krendelev, S.F., et al.: Order-preserving encryption schemes based on arithmetic coding and matrices. In: Proceedings of the FedCSIS 2014, pp. 891–899. PTI (2014)Google Scholar
  23. 23.
    Lewi, K., Wu, D.J.: Order-revealing encryption: new constructions, applications, and lower bounds. In: Proceedings of the CCS 2016, pp. 1167–1178. ACM (2016)Google Scholar
  24. 24.
    Liu, D., Wang, S.: Programmable order-preserving secure index for encrypted database query. In: Proceedings of the CLOUD 2012, pp. 502–509. IEEE (2012)Google Scholar
  25. 25.
    Liu, Z., et al.: New order preserving encryption model for outsourced databases in cloud environments. J. Netw. Comput. Appl. 59, 198–207 (2016)CrossRefGoogle Scholar
  26. 26.
    Massey, J.L.: Guessing and entropy. In: Proceedings of the ISIT 1994, p. 204. IEEE (1994)Google Scholar
  27. 27.
    Naveed, M., et al.: Inference attacks on property-preserving encrypted databases. In: Proceedings of the CCS 2015, pp. 644–655. ACM (2015)Google Scholar
  28. 28.
    O’Malley, O.: TeraByte sort on Apache Hadoop. Technical report, Yahoo, Inc., pp. 1–3, May 2008. http://sortbenchmark.org/YahooHadoop.pdf
  29. 29.
    Popa, R.A., et al.: An ideal-security protocol for order-preserving encoding. In: Proceedings of the SP 2013, pp. 463–477. IEEE (2013)Google Scholar
  30. 30.
    Popa, R.A., et al.: CryptDB: protecting confidentiality with encrypted query processing. In: Proceedings of the SOSP 2011, pp. 85–100. ACM (2011)Google Scholar
  31. 31.
    Popa, R.A., et al.: CryptDB, March 2014. https://css.csail.mit.edu/cryptdb/
  32. 32.
    Rivest, R.L., et al.: On data banks and privacy homomorphisms. Found. Secure Comput. 4(11), 169–180 (1978)MathSciNetGoogle Scholar
  33. 33.
    Teranishi, I., Yung, M., Malkin, T.: Order-preserving encryption secure beyond one-wayness. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 42–61. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-45608-8_3CrossRefGoogle Scholar
  34. 34.
    The Apache Software Foundation: Commons Math: The Apache Commons Mathematics Library. Version 3.6.1, August 2016. http://commons.apache.org/proper/commons-math/
  35. 35.
    Xiao, L., Yen, I.-L.: A note for the ideal order-preserving encryption object and generalized order-preserving encryption. Cryptology ePrint Archive: 2012/350 (2012)Google Scholar
  36. 36.
    Xiao, L., Yen, I.-L.: Security analysis for order preserving encryption schemes. In: Proceedings of the CISS 2012, pp. 1–6. IEEE (2012)Google Scholar
  37. 37.
    Yum, D.H., Kim, D.S., Kim, J.S., Lee, P.J., Hong, S.J.: Order-preserving encryption for non-uniformly distributed plaintexts. In: Jung, S., Yung, M. (eds.) WISA 2011. LNCS, vol. 7115, pp. 84–97. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-27890-7_7CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Computer ScienceUniversity of ManchesterManchesterUK
  2. 2.School of ComputingUniversity of LeedsLeedsUK

Personalised recommendations