Skip to main content

Preferential Placement for Community Structure Formation

  • Conference paper
  • First Online:
Algorithms and Models for the Web Graph (WAW 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10519))

Included in the following conference series:

Abstract

Various models have been recently proposed to reflect and predict different properties of complex networks. However, the community structure, which is one of the most important properties, is not well studied and modeled. In this paper, we suggest a principle called “preferential placement”, which allows to model a realistic community structure. We provide an extensive empirical analysis of the obtained structure as well as some theoretical heuristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Modularity, introduced in [37], can be used to define communities in graphs. However, this characteristic has certain drawbacks, as discussed in [20]. Moreover, modularity favors partitions with approximately equal communities, which contradicts the main idea of power-law distribution of community sizes.

References

  1. http://konect.uni-koblenz.de/plots/bidd

  2. Aiello, W., Bonato, A., Cooper, C., Janssen, J., Prałat, P.: A spatial web graph model with local influence regions. Internet Math. 5(1–2), 175–196 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arenas, A., Danon, L., Diaz-Guilera, A., Gleiser, P.M., Guimera, R.: Community analysis in social networks. Eur. Phys. J. B 38(2), 373–380 (2004)

    Article  MATH  Google Scholar 

  4. Artikov, A., Dorodnykh, A., Kashinskaya, Y., Samosvat, E.: Factorization threshold models for scale-free networks generation. Comput. Soc. Netw. 3(1), 4 (2016)

    Article  Google Scholar 

  5. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barthélemy, M.: Crossover from scale-free to spatial networks. EPL (Europhysics Letters) 63(6), 915 (2003)

    Article  Google Scholar 

  7. Barthélemy, M.: Spatial networks. Phys. Rep. 499(1), 1–101 (2011)

    Article  MathSciNet  Google Scholar 

  8. Bender, E.A., Canfield, E.R.: The asymptotic number of labeled graphs with given degree sequences. J. Comb. Theory, Ser. A 24(3), 296–307 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  9. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: structure and dynamics. Phys. Rep. 424(4), 175–308 (2006)

    Article  MathSciNet  Google Scholar 

  10. Bollobás, B., Riordan, O., Spencer, J., Tusnády, G., et al.: The degree sequence of a scale-free random graph process. Random Struct. Algorithms 18(3), 279–290 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bollobás, B., Riordan, O.M.: Mathematical results on scale-free random graphs. In: Bornholdt, S., Schuster, H.G. (eds.) Handbook of Graphs and Networks: From the Genome to the Internet, pp. 1–34. Wiley-VCH, Weinheim (2003)

    Google Scholar 

  12. Bradonjić, M., Hagberg, A., Percus, A.G.: The structure of geographical threshold graphs. Internet Math. 5(1–2), 113–139 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Buckley, P.G., Osthus, D.: Popularity based random graph models leading to a scale-free degree sequence. Discrete Math. 282(1), 53–68 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70(6), 066111 (2004)

    Article  Google Scholar 

  15. da F Costa, L., Rodrigues, F.A., Travieso, G., Villas Boas, P.R.: Characterization of complex networks: a survey of measurements. Adv. Phys. 56(1), 167–242 (2007)

    Google Scholar 

  16. Dunlavy, D.M., Kolda, T.G., Acar, E.: Temporal link prediction using matrix and tensor factorizations. ACM Trans. Knowl. Discovery Data (TKDD) 5(2), 10 (2011)

    Google Scholar 

  17. Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, vol. 96, pp. 226–231 (1996)

    Google Scholar 

  18. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topology. In: ACM SIGCOMM Computer Communication Review, vol. 29, pp. 251–262. ACM (1999)

    Google Scholar 

  19. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  20. Fortunato, S., Barthelemy, M.: Resolution limit in community detection. Proc. Natl. Acad. Sci. 104(1), 36–41 (2007)

    Article  Google Scholar 

  21. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Guimera, R., Danon, L., Diaz-Guilera, A., Giralt, F., Arenas, A.: Self-similar community structure in a network of human interactions. Phys. Rev. E 68(6), 065103 (2003)

    Article  Google Scholar 

  23. Holme, P., Kim, B.J.: Growing scale-free networks with tunable clustering. Phys. Rev. E 65(2), 026107 (2002)

    Article  Google Scholar 

  24. Hufnagel, L., Brockmann, D., Geisel, T.: Forecast and control of epidemics in a globalized world. Proc. Natl. Acad. Sci. U.S.A. 101(42), 15124–15129 (2004)

    Article  Google Scholar 

  25. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146. ACM (2003)

    Google Scholar 

  26. Krot, A., Ostroumova Prokhorenkova, L.: Local clustering coefficient in generalized preferential attachment models. In: Gleich, D.F., Komjáthy, J., Litvak, N. (eds.) WAW 2015. LNCS, vol. 9479, pp. 15–28. Springer, Cham (2015). doi:10.1007/978-3-319-26784-5_2

    Chapter  Google Scholar 

  27. Kumpula, J.M., Onnela, J.-P., Saramäki, J., Kertész, J., Kaski, K.: Model of community emergence in weighted social networks. Comput. Phys. Commun. 180(4), 517–522 (2009)

    Article  MATH  Google Scholar 

  28. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78(4), 046110 (2008)

    Article  Google Scholar 

  29. Lipsitch, M., Cohen, T., Cooper, B., Robins, J.M., Ma, S., James, L., Gopalakrishna, G., Chew, S.K., Tan, C.C., Samore, M.H., et al.: Transmission dynamics and control of severe acute respiratory syndrome. Science 300(5627), 1966–1970 (2003)

    Article  Google Scholar 

  30. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inform. Theory 28(2), 129–137 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  31. Masuda, N., Miwa, H., Konno, N.: Geographical threshold graphs with small-world and scale-free properties. Phys. Rev. E 71(3), 036108 (2005)

    Article  Google Scholar 

  32. Menon, A.K., Elkan, C.: Link prediction via matrix factorization. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011. LNCS, vol. 6912, pp. 437–452. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23783-6_28

    Chapter  Google Scholar 

  33. Menon, A.K., Elkan, C.: A log-linear model with latent features for dyadic prediction. In: 2010 IEEE 10th International Conference on Data Mining (ICDM), pp. 364–373. IEEE (2010)

    Google Scholar 

  34. Miller, K., Jordan, M.I., Griffiths, T.L.: Nonparametric latent feature models for link prediction. In: Advances in Neural Information Processing Systems, pp. 1276–1284 (2009)

    Google Scholar 

  35. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Newman, M.E.J.: Power laws, pareto distributions and zipf’s law. Contemp. Phys. 46(5), 323–351 (2005)

    Article  Google Scholar 

  37. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004)

    Article  Google Scholar 

  38. Ostroumova Prokhorenkova, L., Samosvat, E.: Recency-based preferential attachment models. J. Complex Netw. 4(4), 475–499 (2016)

    MathSciNet  Google Scholar 

  39. Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043), 814–818 (2005)

    Article  Google Scholar 

  40. Pollner, P., Palla, G., Vicsek, T.: Preferential attachment of communities: the same principle, but a higher level. EPL (Europhysics Letters) 73(3), 478 (2005)

    Article  MathSciNet  Google Scholar 

  41. Raigorodskii, A.M.: Small subgraphs in preferential attachment networks. Optimization Lett. 11(2), 249–257 (2017)

    Google Scholar 

  42. Romero, D.M., Meeder, B., Kleinberg, J.: Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter. In: Proceedings of the 20th International Conference on World Wide Web, pp. 695–704. ACM (2011)

    Google Scholar 

  43. Wang, C., Knight, J.C., Elder, M.C.: On computer viral infection and the effect of immunization. In: 16th Annual Conference on Computer Security Applications, ACSAC 2000, pp. 246–256. IEEE (2000)

    Google Scholar 

  44. Waxman, B.M.: Routing of multipoint connections. IEEE J. Sel. Areas Commun. 6(9), 1617–1622 (1988)

    Article  Google Scholar 

  45. Zhou, T., Yan, G., Wang, B.-H.: Maximal planar networks with large clustering coefficient and power-law degree distribution. Phys. Rev. E 71(4), 046141 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Russian President grant MK-527.2017.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liudmila Ostroumova Prokhorenkova .

Editor information

Editors and Affiliations

Appendices

Appendix

Proof of Theorem 1

First, recall the process of cluster formation:

  • At the beginning of the process we have one vertex which forms one cluster.

  • At n-th step with probability p(n) a new cluster consisting of \(v_n\) is created.

  • With probability \(1-p(n)\) new vertex joins already existing cluster C with probability proportional to |C|.

So, we can write the following equations:

$$\begin{aligned} \mathrm {E}(F_{t+1}(1)|S_t) = F_{t}(1) \left( 1 - \frac{1-p(t)}{t}\right) + p(t)\,, \end{aligned}$$
(1)
$$\begin{aligned} \mathrm {E}(F_{t+1}(s)|S_t) = F_{t}(s) \left( 1 - \frac{s(1-p(t))}{t}\right) + F_t(s-1)\frac{(s-1)(1-p(t))}{t}\,, \,\,\, \, s>1\,. \end{aligned}$$
(2)

Now we can take expectations of the both sides of the above equations and analyze the behavior of \(\mathrm {E}F_{t}(s)\) inductively.

Consider the case \(\alpha =0\), i.e., \(p(n) = c\). Let us prove that in this case

$$\begin{aligned} \mathrm {E}F_n(s) = \frac{c (s-1)!\,\mathrm {\Gamma }\left( 2+\frac{1}{1-c}\right) }{(2-c)\mathrm {\Gamma }\left( s+1+\frac{1}{1-c}\right) }\left( n + \theta _{n,s}\right) \,. \end{aligned}$$
(3)

where \(\theta _{n,s} \le C \, s^\frac{1}{1-c}\) for some constant \(C>0\).

We prove this result by induction on s and for each s the proof is by induction on n. Note that for \(n=1\) Eq. (3) holds for all s. Consider now the case \(s = 1\). We want to prove that

$$ \mathrm {E}F_n(1) = \frac{c}{2-c}\left( n + \theta _{n,1}\right) \,. $$

For the inductive step we use Eq. (1) and get

figure c

Since

$$ C \left( 1 - \frac{1-c}{t} \right) \le C, $$

this finishes the proof for \(\alpha =0\) and \(s=1\).

For \(s>1\) we use Eq. (2) and get

figure d

To finish the proof we need to show that

$$ (s-1)^{\frac{1}{1-c}} \frac{s(1-c) + 1}{t} \le s^{\frac{1}{1-c}}\frac{s(1-c)}{t}\,. $$

It is easy to show that the above inequality holds.

Now we consider the case \(p(n) = cn^{-\alpha }\) for \(0< \alpha \le 1\). Let us prove that in this case

$$ \mathrm {E}F_n(s) = \frac{c (s-1)! \, \mathrm {\Gamma }(3-\alpha )}{(2-\alpha )\mathrm {\Gamma }(s+2-\alpha )} \left( n^{1-\alpha } + \theta _{n,s}\right) \,, $$

where \(\theta _{n,s} \le C n^{\max \{0,1-2\alpha \}}s^{1-\alpha +\epsilon }\) for some constant \(C>0\) and for any \(\epsilon >0\).

The proof is similar to the case \(\alpha = 0\). Again, for \(n=1\) the theorem holds. Consider \(s = 1\). We want to prove that

$$ \mathrm {E}F_n(1) = \frac{c}{2-\alpha } \left( n^{1-\alpha } + \theta _{n,1}\right) . $$

Inductive step in this case becomes

figure e

In order to finish the proof for the case \(s=1\) it is sufficient to show that

$$ O\left( t^{-\alpha -1}\right) + c\, t^{-2\alpha } \le C t^{\max \{0,1-2\alpha \}} \frac{1-ct^{-\alpha }}{t}\,, $$

which holds for sufficiently large C.

For \(s>1\) we have:

figure f

In order to finish the proof, it remains to show that

figure g
figure h
$$ O\left( t^{-\alpha } \right) + \frac{t^{1-2\alpha } c (1 - \alpha )}{1-ct^{-\alpha }} \le C t^{\max \{0,1-2\alpha \}} s^{1-\alpha +\epsilon }\epsilon \,, $$

which holds for sufficiently large C.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Dorodnykh, A., Ostroumova Prokhorenkova, L., Samosvat, E. (2017). Preferential Placement for Community Structure Formation. In: Bonato, A., Chung Graham, F., Prałat, P. (eds) Algorithms and Models for the Web Graph. WAW 2017. Lecture Notes in Computer Science(), vol 10519. Springer, Cham. https://doi.org/10.1007/978-3-319-67810-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67810-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67809-2

  • Online ISBN: 978-3-319-67810-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics