Skip to main content

Kernels on Graphs as Proximity Measures

  • Conference paper
  • First Online:
Algorithms and Models for the Web Graph (WAW 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10519))

Included in the following conference series:

Abstract

Kernels and, broadly speaking, similarity measures on graphs are extensively used in graph-based unsupervised and semi-supervised learning algorithms as well as in the link prediction problem. We analytically study proximity and distance properties of various kernels and similarity measures on graphs. This can potentially be useful for recommending the adoption of one or another similarity measure in a machine learning method. Also, we numerically compare various similarity measures in the context of spectral clustering and observe that normalized heat-type similarity measures with log modification generally perform the best.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    M. Saerens [36] has remarked that a more suitable name could be Neumann diffusion kernel, referring to the Neumann series \(\sum _{k=0}^\infty T^k\) (where T is an operator) named after Carl Gottfried Neumann, while a connection of that to John von Neumann is not obvious (the concept of von Neumann kernel in group theory is essentially different).

  2. 2.

    In fact, L. Katz considered \(\sum _{k=1}^\infty (\alpha W)^k.\)

  3. 3.

    For the properties of M-matrices, we refer to [29].

  4. 4.

    If K is symmetric, then (6) coincides with (2).

  5. 5.

    On various alternative versions of the triangle inequality, we refer to [17].

References

  1. Avrachenkov, K., Mishenin, A., Gonçalves, P., Sokol, M.: Generalized optimization framework for graph-based semi-supervised learning. In: Proceedings of the 2012 SIAM International Conference on Data Mining, pp. 966–974 (2012)

    Google Scholar 

  2. Avrachenkov, K., Gonçalves, P., Sokol, M.: On the choice of kernel and labelled data in semi-supervised learning methods. In: Bonato, A., Mitzenmacher, M., Prałat, P. (eds.) WAW 2013. LNCS, vol. 8305, pp. 56–67. Springer, Cham (2013). doi:10.1007/978-3-319-03536-9_5

    Chapter  Google Scholar 

  3. Avrachenkov, K., Chebotarev, P., Mishenin, A.: Semi-supervised learning with regularized Laplacian. Optim. Methods Softw. 32(2), 222–236 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Avrachenkov, K., van der Hofstad, R., Sokol, M.: Personalized PageRank with node-dependent restart. In: Proceedings of International Workshop on Algorithms and Models for the Web-Graph, pp. 23–33 (2014)

    Google Scholar 

  5. Backstrom, L., Leskovec, J.: Supervised random walks: predicting and recommending links in social networks. Proc. ACM WSDM 2011, 635–644 (2011)

    Google Scholar 

  6. Boley, D., Ranjan, G., Zhang, Z.L.: Commute times for a directed graph using an asymmetric Laplacian. Linear Algebra Appl. 435(2), 224–242 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chapelle, O., Schölkopf, B., Zien, A.: Semi-Supervised Learning. MIT Press, Cambridge (2006)

    Book  Google Scholar 

  8. Chebotarev, P.: The graph bottleneck identity. Adv. Appl. Math. 47(3), 403–413 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chebotarev, P.: A class of graph-geodetic distances generalizing the shortest-path and the resistance distances. Discrete Appl. Math. 47(3), 403–413 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Chebotarev, P.: The walk distances in graphs. Discrete Appl. Math. 160(10–11), 1484–1500 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chebotarev, P. Yu., Shamis, E.V.: On the proximity measure for graph vertices provided by the inverse Laplacian characteristic matrix. In: Abstracts of the conference “Linear Algebra and its Application”, 10–12 June 1995, The Institute of Mathematics and its Applications, in conjunction with the Manchester Center for Computational Mathematics, Manchester, UK (pp. 6–7), URL http://www.ma.man.ac.uk/higham/laa95/abstracts.ps (1995)

  12. Chebotarev, P.Y., Shamis, E.V.: The matrix-forest theorem and measuring relations in small social groups. Autom. Remote Control 58(9), 1505–1514 (1997)

    MATH  Google Scholar 

  13. Chebotarev, P.Y., Shamis, E.V.: On a duality between metrics and \(\varSigma \)-proximities. Autom. Remote Control 59(4), 608–612 (1998)

    MATH  Google Scholar 

  14. Chebotarev, P.Y., Shamis, E.V.: On proximity measures for graph vertices. Autom. Remote Control 59(10), 1443–1459 (1998)

    MATH  Google Scholar 

  15. Chung, F.: Spectral graph theory, vol. 92. American Math. Soc. (1997)

    Google Scholar 

  16. Chung, F.: The heat kernel as the pagerank of a graph. Proc. Natl. Acad. Sci. 104(50), 19735–19740 (2007)

    Article  Google Scholar 

  17. Deza, M., Chebotarev, P.: Protometrics. arXiv preprint arXiv:1112.4829 (2011)

  18. Dhillon, I.S., Fan, J., Guan, Y.: Efficient clustering of very large document collections. Data Min. sci. Eng. Appl. 2, 357–381 (2001)

    Google Scholar 

  19. Dhillon, I.S., Guan, Y., Kulis, B.: Kernel k-means: spectral clustering and normalized cuts. Proc. ACM KDD 2004, 551–556 (2004)

    Google Scholar 

  20. Estrada, E., Hatano, N.: Statistical-mechanical approach to subgraph centrality in complex networks. Chem. Phys. Lett. 439, 247–251 (2007)

    Article  Google Scholar 

  21. Estrada, E., Hatano, N.: Communicability in complex networks. Phys. Rev. E 77(3), 036111 (2008)

    Article  MathSciNet  Google Scholar 

  22. Estrada, E., Silver, G.: Accounting for the role of long walks on networks via a new matrix function. J. Math. Anal. Appl. 449, 1581–1600 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fouss, F., Yen L., Pirotte, A., Saerens, M.: An experimental investigation of graph kernels on a collaborative recommendation task. In: Proceedings of the Sixth International Conference on Data Mining (ICDM 2006), pp. 863–868, IEEE (2006)

    Google Scholar 

  24. Fouss, F., Saerens, M., Shimbo, M.: Algorithms and Models for Network Data and Link Analysis. Cambridge University Press, Cambridge (2016)

    Book  Google Scholar 

  25. Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  26. Ivashkin, V., Chebotarev, P.: Do logarithmic proximity measures outperform plain ones in graph clustering? In: Kalyagin, V.A., et al. (eds.) Models, Algorithms and Technologies for Network Analysis. Springer Proceedings in Mathematics & Statistics, vol. 197, pp. 87–105. Springer, Cham (2017)

    Chapter  Google Scholar 

  27. Jacobsen, K., Tien, J.: A generalized inverse for graphs with absorption. arXiv preprint arXiv:1611.02233 (2016)

  28. Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953)

    Article  MATH  Google Scholar 

  29. Kirkland, S.J., Neumann, M.: Group Inverses of M-matrices and Their Applications. CRC Press, Boca Raton (2012)

    MATH  Google Scholar 

  30. Kivimäki, I., Shimbo, M., Saerens, M.: Developments in the theory of randomized shortest paths with a comparison of graph node distances. Phys. A 393, 600616 (2014)

    Article  Google Scholar 

  31. Kondor, R.I., Lafferty, J.: Diffusion kernels on graphs and other discrete input spaces. In: Proceedings of ICML, pp. 315–322 (2002)

    Google Scholar 

  32. Lenart, C.: A generalized distance in graphs and centered partitions. SIAM J. Discrete Math. 11(2), 293–304 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Assoc. Inform. Sci. Technol. 58(7), 1019–1031 (2007)

    Article  Google Scholar 

  34. Schoenberg, I.J.: Remarks to Maurice Fréchet’s article “Sur la définition axiomatique d’une classe d’espace distanciés vectoriellement applicable sur l’espace de Hilbert”. Ann. Math. 36(3), 724–732 (1935)

    Article  MathSciNet  MATH  Google Scholar 

  35. Schoenberg, I.J.: Metric spaces and positive definite functions. Trans. Am. Math. Soc. 44(3), 522–536 (1938)

    Article  MathSciNet  MATH  Google Scholar 

  36. Saerens, M.: Personal communication

    Google Scholar 

  37. Kandola, J., Shawe-Taylor, J., Cristianini, N.: Learning semantic similarity. In: Neural Information Processing Systems 15 (NIPS 2015). MIT Press (2002)

    Google Scholar 

  38. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  39. Smola, A.J., Kondor, R.: Kernels and regularization on graphs. In: Learning Theory and Kernel Machines, pp. 144–158 (2003)

    Google Scholar 

  40. Sommer, F., Fouss, F., Saerens, M.: Comparison of graph node distances on clustering tasks. In: Villa, A.E.P., Masulli, P., Pons Rivero, A.J. (eds.) ICANN 2016. LNCS, vol. 9886, pp. 192–201. Springer, Cham (2016). doi:10.1007/978-3-319-44778-0_23

    Chapter  Google Scholar 

  41. Vishwanathan, S.V.N., Schraudolph, N.N., Kondor, R., Borgwardt, K.M.: Graph kernels. J. Mach. Learn. Res. 11, 1201–1242 (2010)

    MathSciNet  MATH  Google Scholar 

  42. von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  43. Zhou, D., Schölkopf, B., Hofmann, T.: Semi-supervised learning on directed graphs. In: Proceeedings of NIPS, pp. 1633–1640 (2004)

    Google Scholar 

  44. Müller, K.-R., Mika, S., Rätsch, G., Tsuda, K., Schölkopf, B.: An Introduction to kernel-based learning algorithms. IEEE Trans. Neural Networks 12(2), 181–202 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

The work of KA and DR was supported by the joint Bell Labs Inria ADR “Network Science” and by UCA-JEDI Idex Grant “HGRAPHS”, and the work of PC was supported by the Russian Science Foundation (project no.16-11-00063 granted to IRE RAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Avrachenkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Avrachenkov, K., Chebotarev, P., Rubanov, D. (2017). Kernels on Graphs as Proximity Measures. In: Bonato, A., Chung Graham, F., Prałat, P. (eds) Algorithms and Models for the Web Graph. WAW 2017. Lecture Notes in Computer Science(), vol 10519. Springer, Cham. https://doi.org/10.1007/978-3-319-67810-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67810-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67809-2

  • Online ISBN: 978-3-319-67810-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics