Skip to main content

Abstract

The chapter deals with hot Brownian particles and swimmers as two examples for Brownian motion very far from equilibrium. Thanks to the strong scale separation between the Brownian particles and the solvent atoms, substantial theoretical progress could be made along the lines first laid out by Einstein, yielding exact analytical predictions for hot Brownian dynamics by coarse graining. Wherever these predictions were tested, they were found in excellent agreement with experimental observations and simulation data. The chapter is as well dealing with the steering of hot swimmers by Maxwell-demon type methods summarily known as photon nudging. They enable experimentalists to tailor their interactions and to create micron-sized swarms of active particles serving as a microscopic laboratory for studying large-scale biological phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For further introductory reading see Refs. [3,4,5,6]. The names of our collaborators (partly funded by the Deutsche Forschungsgemeinschaft and the Humboldt foundation), who did much of the original work reviewed here, can be found in the references, at the end.

  2. 2.

    The analogy might seem compelling, but the opponents of the atomistic world view would have objected to the application of thermodynamic notions to colloidal particles.

  3. 3.

    At the time of writing, Google Scholar lists more than 6000 citations.

  4. 4.

    The general expression for a non-spherical particle in an arbitrary temperature field is slightly more complex than Eq. (8.6), but its basic structure is the same [20].

  5. 5.

    Joseph Fourier assumed heat to diffuse, an idea adapted to particles by Adolf Fick in 1855.

  6. 6.

    We count incoming energies as positive in the first law of thermodynamics: \(\mathrm {d}U=\delta Q +\delta W\).

References

  1. A. Einstein, Ann. Phys. 322, 549 (1905)

    Article  Google Scholar 

  2. R. Feynman, R. Leighton, M. Sands, The Feynman Lectures of Physics, vol. 1 (Addison-Wesley, Reading, MA, 1963)

    MATH  Google Scholar 

  3. M. Haw, Phys. World 18(1), 19 (2005)

    Article  Google Scholar 

  4. E. Frey, K. Kroy, Ann. Phys. (Leipzig) 14, 20 (2005)

    Article  ADS  Google Scholar 

  5. M. Haw, Middle World: The Restless Heart of Matter and Life (Macmillan, New York, 2006)

    Google Scholar 

  6. K. Kroy, Physik J. 15, 20 (2016). (in German)

    ADS  Google Scholar 

  7. G. Gompper et al. (eds.), Microswimmers. From single particle motion to collective behavior. Eur. Phys. J. Spec. Top. 225, 11–12 (2016)

    Google Scholar 

  8. K. Kroy, D. Chakraborty, F. Cichos, Eur. Phys. J. Spec. Top. 225, 2207 (2016)

    Article  Google Scholar 

  9. J. Palacci, C. Cottin-Bizonne, C. Ybert, L. Bocquet, Phys. Rev. Lett. 105, 088304 (2010)

    Article  ADS  Google Scholar 

  10. N.V. Brilliantov, T. Pöschel, Kinetic Theory of Granular Gases (Oxford University Press, Oxford, 2004)

    Book  MATH  Google Scholar 

  11. B. Smeets et al., Proc. Natl. Acad. Sci (USA) 113, 14621 (2016)

    Article  ADS  Google Scholar 

  12. A.P. Solon et al., Nat. Phys. 11, 673 (2015)

    Article  Google Scholar 

  13. H. Morowitz, E. Smith, Complexity 13, 51 (2007)

    Article  ADS  Google Scholar 

  14. P. Sartori, S. Pigolotti, Phys. Rev. X 5, 041039 (2015)

    Google Scholar 

  15. C. Battle et al., Science 352, 604 (2016)

    Article  ADS  Google Scholar 

  16. M. Skolnik, Radar Handbook (McGraw-Hill, New York, 1970)

    Google Scholar 

  17. T.A. Milligan, Modern Antenna Design (Wiley, USA, 2005)

    Book  Google Scholar 

  18. H. Turlier et al., Nat. Phys. 12, 513 (2016)

    Article  Google Scholar 

  19. E. Smith, Rep. Prog. Phys. 74, 046601 (2001)

    Article  ADS  Google Scholar 

  20. G. Falasco, M.V. Gnann, D. Rings, K. Kroy, Phys. Rev. E 90, 032131 (2014)

    Article  ADS  Google Scholar 

  21. G. Falasco, K. Kroy, Phys. Rev. E 93, 032150 (2016)

    Article  ADS  Google Scholar 

  22. T. Li, S. Kheifets, D. Medellin, M.G. Raizen, Science 328, 1673 (2010)

    Article  ADS  Google Scholar 

  23. T. Franosch et al., Nature 478, 85 (2011)

    Article  ADS  Google Scholar 

  24. D. Chakraborty et al., Europhys. Lett. 96, 60009 (2011)

    Article  ADS  Google Scholar 

  25. D. Rings, D. Chakraborty, K. Kroy, New J. Phys. 14, 053012 (2012)

    Article  ADS  Google Scholar 

  26. N. Oppenheimer, S. Navardi, H.A. Stone, Phys. Rev. Fluids 1, 014001 (2016)

    Article  ADS  Google Scholar 

  27. G. Falasco, R. Pfaller, M. Gnann, K. Kroy, arXiv:1406.2116 (unpublished)

  28. M. Selmke, R. Schachoff, M. Braun, F. Cichos, RSC Adv. 3, 394 (2013)

    Article  Google Scholar 

  29. R. Schachoff et al., Differ. Fund. 23, 1 (2015)

    Google Scholar 

  30. D. Rings et al., Phys. Rev. Lett. 105, 090604 (2010)

    Article  ADS  Google Scholar 

  31. G. Falasco et al., Phys. Rev. E 94, 030602(R) (2016)

    Article  ADS  Google Scholar 

  32. H.-R. Jiang, N. Yoshinaga, M. Sano, Phys. Rev. Lett. 105, 268302 (2010)

    Article  ADS  Google Scholar 

  33. T. Bickel, A. Majee, A. Würger, Phys. Rev. E 88, 012301 (2013)

    Article  ADS  Google Scholar 

  34. W.C.K. Poon, in Physics of Complex Colloids, Vol. 184 of Proceedings of the International School of Physics “Enrico Fermi”, ed. by F.S.C. Bechinger, P. Ziherl (IOS, SIF, Amsterdam, Bologna, 2013), p. 317

    Google Scholar 

  35. I. Llopis, I. Pagonabarraga, J. Non-Newton, Fluid Mech. 165, 946 (2010)

    Google Scholar 

  36. W.B. Jackson, N.M. Amer, A.C. Boccara, D. Fournier, Appl. Opt. 20, 1333 (1981)

    Article  ADS  Google Scholar 

  37. M. Harada, K. Iwamotok, T. Kitamori, T. Sawada, Anal. Chem. 65, 2938 (1993)

    Article  Google Scholar 

  38. D. Boyer et al., Science 297, 1160 (2002)

    Article  ADS  Google Scholar 

  39. S. Berciaud, L. Cognet, G. Blab, B. Lounis, Phys. Rev. Lett. 93, 257402 (2004)

    Article  ADS  Google Scholar 

  40. A. Gaiduk, M. Yorulmaz, P.V. Ruijgrok, M. Orrit, Science 330, 353 (2010)

    Article  ADS  Google Scholar 

  41. M. Selmke, M. Braun, F. Cichos, ACS Nano 6, 2741 (2012)

    Article  Google Scholar 

  42. M. Selmke, F. Cichos, Am. J. Phys. 81, 405 (2013)

    Article  ADS  Google Scholar 

  43. E. Rutherford, Philos. Mag. Ser. (1911)

    Google Scholar 

  44. M. Selmke, F. Cichos, Phys. Rev. Lett. 110, 103901 (2013)

    Article  ADS  Google Scholar 

  45. L.C.B.L.S. Berciaud, Nano Lett. 5, 2160 (2005)

    Google Scholar 

  46. D. Magde, E. Elson, W.W. Webb, Phys. Rev. Lett. (1972)

    Google Scholar 

  47. P.M.R. Paulo et al., J. Phys. Chem. C 113, 11451 (2009)

    Article  Google Scholar 

  48. V. Octeau et al., ACS Nano 3, 345 (2009)

    Article  Google Scholar 

  49. R. Radünz, D. Rings, K. Kroy, J. Phys. Chem. A (2009)

    Google Scholar 

  50. S. Kheifets et al., Science 343, 1493 (2014)

    Article  ADS  Google Scholar 

  51. B. Qian et al., Chem. Sci. 4, 1420 (2013)

    Article  Google Scholar 

  52. A.P. Bregulla, H. Yang, F. Cichos, ACS Nano 8, 6542 (2014)

    Article  Google Scholar 

  53. U. Seifert, Rep. Prog. Phys. 75, 126001 (2012)

    Article  ADS  Google Scholar 

  54. E. Fodor et al., Phys. Rev. Lett. 117, 038103 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  55. K. Sekimoto, Stochastic Energetics, Vol. 799 of Lecture Notes in Physics (Springer, Berlin, Heidelberg, 2010)

    Google Scholar 

  56. P.B. Roder et al., Proc. Natl. Acad. Sci. (USA) 112, 15024 (2015)

    Article  ADS  Google Scholar 

  57. J. Millen, T. Deesuwan, P. Barker, J. Anders, Nat. Nanotechnol. 9, 425 (2014)

    Article  ADS  Google Scholar 

  58. K. Kroy, Nat. Nanotechnol. 9, 415 (2014)

    Article  ADS  Google Scholar 

  59. P.I. Hurtado, C. Pérez-Espigares, J.J. Pozo, P.L. Garrido, Proc. Natl. Acad. Sci. (USA) 108, 7704 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  60. H. Feng, J. Wang, J. Chem. Phys. 135, 234511 (2011)

    Article  ADS  Google Scholar 

  61. M. Polettini, Europhys. Lett. 97, 30003 (2012)

    Article  ADS  Google Scholar 

  62. K. Mallick, M. Moshe, H. Orland, J. Phys. A: Math. Theoret. 44, 095002 (2011)

    Article  ADS  Google Scholar 

  63. C. Aron, G. Biroli, L.F. Cugliandolo, J. Stat. Mech.: Theoret. Exp. 2010, P11018 (2010)

    Google Scholar 

  64. L. Joly, S. Merabia, J.-L. Barrat, Europhys. Lett. 94, 50007 (2011)

    Article  ADS  Google Scholar 

  65. A. Argun et al., Phys. Rev. E 94, 062150 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Kroy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kroy, K., Cichos, F. (2018). Hot Brownian Motion. In: Bunde, A., Caro, J., Kärger, J., Vogl, G. (eds) Diffusive Spreading in Nature, Technology and Society. Springer, Cham. https://doi.org/10.1007/978-3-319-67798-9_8

Download citation

Publish with us

Policies and ethics