Advertisement

Spreading Fundamentals

  • Armin Bunde
  • Christian Chmelik
  • Jörg KärgerEmail author
  • Gero Vogl
Chapter

Abstract

We start with an introduction into the fundamentals of the mathematical treatment of diffusion phenomena and, thus, into the fundamentals of diffusive spreading. The mathematical formalism is kept within the common frame known from school and shown to nicely cover a larger variety of spreading phenomena, irrespective of this simplicity. It is true, however, that spreading phenomena in nature, technology and society may occur under quite complex conditions so that—correspondingly—also more complex methods of analysis are required. The chapter does as well introduce into these approaches—and into those book chapters where these approaches are followed in more detail.

References

  1. 1.
    C. Bräuchle, D.C. Lamb, J. Michaelis (eds.), Single Particle Tracking and Single Molecule Energy Transfer (Wiley-VCH, Weinheim, 2010)Google Scholar
  2. 2.
    H. Mehrer, Diffusion in Solids. Springer Series in Solid-State Science, vol. 155 (2007)Google Scholar
  3. 3.
    J. Kärger, F. Stallmach, PFG NMR studies of anomalous diffusion, in Diffusion in Condensed Matter. Methods, Materials, Models, ed. by P. Heitjans, J. Kärger (Springer, 2005), pp. 417–460Google Scholar
  4. 4.
    T. Springer, R. Lechner, Diffusion studies of solids by quasielastic neutron scattering, in Diffusion in Condensed Matter. Methods, Materials, Models, ed. by P. Heitjans, J. Kärger (Springer, 2005), pp. 93–164Google Scholar
  5. 5.
    G. Vogl, B. Sepiol, The elementary diffusion step in metals studied by the interference of gamma-rays, X-rays and neutrons, in Diffusion in Condensed Matter. Methods, Materials, Models, ed. by P. Heitjans, J. Kärger (Springer, 2005), pp. 65–92Google Scholar
  6. 6.
    M. Leitner, B. Sepiol, L.-M. Stadler, B. Pfau, G. Vogl, Nat. Mater. 8, 717 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    J. Kärger, C. Chmelik, R. Valiullin, Phys. J. 12, 39 (2013)Google Scholar
  8. 8.
    J. Kärger, D.M. Ruthven, D.N. Theodorou, Diffusion in Nanoporous Materials (Wiley-VCH, Weinheim, 2012)CrossRefGoogle Scholar
  9. 9.
    J. Kärger (ed.), Leipzig, Einstein, Diffusion (Leipziger Universitätsverlag, Leipzig, 2014) Google Scholar
  10. 10.
    A. Einstein, Ann. Phys. 17, 549 (1905)CrossRefGoogle Scholar
  11. 11.
    K. Pearson, Nature 72, 294 and 342 (1905)Google Scholar
  12. 12.
    I. Prigogine, The End of Certainty (The Free Press, New York, London, Toronto, Sydney, 1997)Google Scholar
  13. 13.
    R.A. Fisher, Ann. Eugen. 7, 335 (1937)Google Scholar
  14. 14.
    J.G. Skellam, Biometrika 38, 196 (1951)MathSciNetCrossRefGoogle Scholar
  15. 15.
    A. Okubo, Diffusion and Ecological Problems: Mathematical Problems, Biomathematics, vol. 10 (Springer, 1980)Google Scholar
  16. 16.
    J.D. Murray, Mathematical Biology (Springer, 1989; 2003)Google Scholar
  17. 17.
    J. Fort, PNAS 109, 18669 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    A. Kandler, R. Unger, J. Steele, Philos. Trans. R. Soc. B 365, 3855 (2010)CrossRefGoogle Scholar
  19. 19.
    D. Brockmann, D. Helbing, Science 342, 1337 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    F. Lenz, T.C. Ings, L. Chittka, A.V. Chechkin, R. Klages, Phys. Rev. Lett. 108, 098103 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    C. Lemmen, D. Gronenborn, K.W. Wirtz, J. Archaeol. Sci. 38, 3459 (2011)CrossRefGoogle Scholar
  22. 22.
    G. Vogl et al., Eur. Phys. J. Spec. Top. 161, 167 (2008); R. Richter et al., J. Appl. Ecol. 50, 1422 (2013)Google Scholar
  23. 23.
    D. Stauffer, X. Castello, V. M. Eguiluz, M. San Miguel, Phys. A 374, 835 (2007); C. Schulze, D. Stauffer, S. Wichmann, Physics 3, 271 (2008)Google Scholar
  24. 24.
    R. Richter et al., Biol. Invasions 15, 657 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Armin Bunde
    • 1
  • Christian Chmelik
    • 2
  • Jörg Kärger
    • 2
    Email author
  • Gero Vogl
    • 3
  1. 1.Institute of Theoretical Physics, Justus Liebig University GiessenGiessenGermany
  2. 2.Faculty of Physics and Earth SciencesLeipzig UniversityLeipzigGermany
  3. 3.Faculty of PhysicsUniversity of ViennaViennaAustria

Personalised recommendations