Advertisement

Nature-Inspired Optimization of Transport in Porous Media

  • Marc-Olivier CoppensEmail author
  • Guanghua Ye
Chapter

Abstract

Materials combining pore sizes of different length scales are highly important for catalysis and separation processes, where optimization of adsorption and transport properties is required. Nature can be an excellent guide to rational design, as it is full of such “hierarchical” structures that are intrinsically scaling, efficient and robust. In technology, as well as in nature, the performance of the transport systems is significantly affected by their structure over different length scales, which provides abundant room to optimize transport through manipulating the multiscale structure, such as transport channel size and distribution. Following this avenue, the chapter discusses a nature-inspired (chemical) engineering (NICE) approach to optimize mass transport for catalytic systems employing porous media, with particular emphasis on the optimization of porous catalysts and proton exchange membrane (PEM) fuel cells.

References

  1. 1.
  2. 2.
    T.L. Bergman, A.S. Lavine, F.P. Incropera, D.P. DeWitt, Fundamentals of Heat and Mass Transfer, 7th edn. (Wiley, New York, 2011)Google Scholar
  3. 3.
    D.D. Do, Adsorption Analysis: Equilibria and Kinetics (Imperial College Press, London, 1998)Google Scholar
  4. 4.
    J. Kärger, D.M. Ruthven, D.N. Theodorou, Diffusion in Nanoporous Materials (Wiley-VCH, Weinheim, 2012)CrossRefGoogle Scholar
  5. 5.
    F. Keil, Catal. Today 53, 245 (1999)CrossRefGoogle Scholar
  6. 6.
    R. Krishna, J.A. Wesselingh, Chem. Eng. Sci. 52, 861 (1997)CrossRefGoogle Scholar
  7. 7.
    R. Krishna, Chem. Soc. Rev. 41, 3099 (2012)CrossRefGoogle Scholar
  8. 8.
    I. Medved, R. Černý, Microporous Mesoporous Mater. 142, 405 (2011)CrossRefGoogle Scholar
  9. 9.
    J. Kärger, ChemPhysChem 16, 24 (2015)CrossRefGoogle Scholar
  10. 10.
    W. Schwieger, A.G. Machoke, T. Weissenberger, A. Inayat, T. Selvam, M. Klumpp, A. Inayat, Chem. Soc. Rev. 45, 3353 (2016)CrossRefGoogle Scholar
  11. 11.
    F.J. Keil, Chem. Eng. Sci. 51, 1543 (1996)CrossRefGoogle Scholar
  12. 12.
    M.-O. Coppens, G. Wang, in Design Heterogeneous Catalysis, ed. U. Ozkan (Wiley, New York, 2009), pp. 25–58Google Scholar
  13. 13.
    M.-O. Coppens, in Catalysis, Structure & Reactivity, ed. A. Cybulski, J.A. Moulijn, 2nd edn. (CRC Press, Boca Raton, 2005), pp. 779–805Google Scholar
  14. 14.
    M. Sahimi, G.R. Gavalas, T.T. Tsotsis, Chem. Eng. Sci. 45, 1443 (1990)CrossRefGoogle Scholar
  15. 15.
    A. Wheeler, Adv. Catal. 3, 249 (1951)Google Scholar
  16. 16.
    M.F. Johnson, W.E. Stewart, J. Catal. 4, 248 (1965)CrossRefGoogle Scholar
  17. 17.
    N. Epstein, Chem. Eng. Sci. 44, 777 (1989)CrossRefGoogle Scholar
  18. 18.
    N. Wakao, J.M. Smith, Ind. Eng. Chem. Fundam. 3, 123 (1964)CrossRefGoogle Scholar
  19. 19.
    N. Wakao, J.M. Smith, Chem. Eng. Sci. 17, 825 (1962)CrossRefGoogle Scholar
  20. 20.
    R.N. Foster, J.B. Butt, AIChE J. 12, 180 (1966)CrossRefGoogle Scholar
  21. 21.
    J. Szekely, J.W. Evans, Chem. Eng. Sci. 25, 1091 (1970)CrossRefGoogle Scholar
  22. 22.
    R. Mann, G. Thomson, Chem. Eng. Sci. 42, 555 (1987)CrossRefGoogle Scholar
  23. 23.
    V.N. Burganos, S.V. Sotirchos, AIChE J. 33, 1678 (1987)CrossRefGoogle Scholar
  24. 24.
    J. Wood, L.F. Gladden, Chem. Eng. Sci. 57, 3047 (2002)CrossRefGoogle Scholar
  25. 25.
    J. Wood, L.F. Gladden, Chem. Eng. Sci. 57, 3033 (2002)CrossRefGoogle Scholar
  26. 26.
    P. Rajniak, R.T. Yang, AIChE J. 42, 319 (1996)CrossRefGoogle Scholar
  27. 27.
    V. Novak, P. Koci, F. Štěpánek, M. Marek, Ind. Eng. Chem. Res. 50, 12904 (2011)CrossRefGoogle Scholar
  28. 28.
    F. Dorai, C. Moura Teixeira, M. Rolland, E. Climent, M. Marcoux, A. Wachs, Chem. Eng. Sci. 129, 180 (2015)CrossRefGoogle Scholar
  29. 29.
    F. Larachi, R. Hannaoui, P. Horgue, F. Augier, Y. Haroun, S. Youssef, E. Rosenberg, M. Prat, M. Quintard, Chem. Eng. J. 240, 290 (2014)CrossRefGoogle Scholar
  30. 30.
    V. Novak, F. Stepanek, P. Koci, M. Marek, M. Kubicek, Chem. Eng. Sci. 65, 2352 (2010)CrossRefGoogle Scholar
  31. 31.
    M.J. Blunt, M.D. Jackson, M. Piri, P.H. Valvatne, Adv. Water Resour. 25, 1069 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    G.T. Vladisavljević, I. Kobayashi, M. Nakajima, R.A. Williams, M. Shimizu, T. Nakashima, J. Memb. Sci. 302, 243 (2007)CrossRefGoogle Scholar
  33. 33.
    H. Sinha, C.-Y. Wang, Electrochem. Solid-State Lett. 9, A344 (2006)CrossRefGoogle Scholar
  34. 34.
    C.A. Baldwin, A.J. Sederman, M.D. Mantle, P. Alexander, L.F. Gladden, J. Colloid Interface Sci. 181, 79 (1996)ADSCrossRefGoogle Scholar
  35. 35.
    A.R. Riyadh, T. Karsten, S.W. Clinton, Soil Sci. Soc. Am. J. 67, 1687 (2003)CrossRefGoogle Scholar
  36. 36.
    J.-Y. Arns, V. Robins, A.P. Sheppard, R.M. Sok, W.V. Pinczewski, M.A. Knackstedt, Transp. Porous Media 55, 21 (2004)CrossRefGoogle Scholar
  37. 37.
    H. Dong, M.J. Blunt, Phys. Rev. E 80, 1 (2009)Google Scholar
  38. 38.
    D. Silin, T. Patzek, Phys. A 371, 336 (2006)CrossRefGoogle Scholar
  39. 39.
    F.A.L. Dullien, Fluid Transport and Pore Structure, 2nd edn. (Academic Press, San Diego, 1992)Google Scholar
  40. 40.
    J.F. Richardson, W.N. Zaki, Trans. Inst. Chem. Eng. 32, 35 (1954)Google Scholar
  41. 41.
    P.N. Sharratt, R. Mann, Chem. Eng. Sci. 42, 1565 (1987)CrossRefGoogle Scholar
  42. 42.
    G.S. Armatas, Chem. Eng. Sci. 61, 4662 (2006)CrossRefGoogle Scholar
  43. 43.
    M.P. Hollewand, L.F. Gladden, Chem. Eng. Sci. 47, 2757 (1992)CrossRefGoogle Scholar
  44. 44.
    M.M. Mezedur, M. Kaviany, W. Moore, AIChE J. 48, 15 (2002)CrossRefGoogle Scholar
  45. 45.
    M.P. Hollewand, L.F. Gladden, Chem. Eng. Sci. 47, 1761 (1992)CrossRefGoogle Scholar
  46. 46.
    B.B. Mandelbrot, The Fractal Geometry of Nature, 2nd edn. (Freeman, San Francisco, 1983)Google Scholar
  47. 47.
    D. Avnir, The Fractal Approach to Heterogeneous Chemistry (Wiley, Chichester, 1989)Google Scholar
  48. 48.
    S. Havlin, D. Ben-Avraham, Adv. Phys. 51, 187 (2002)ADSCrossRefGoogle Scholar
  49. 49.
    M.-O. Coppens, G.F. Froment, Chem. Eng. Sci. 50, 1013 (1995)CrossRefGoogle Scholar
  50. 50.
    M.-O. Coppens, G.F. Froment, Chem. Eng. Sci. 50, 1027 (1995)CrossRefGoogle Scholar
  51. 51.
    M.-O. Coppens, Catal. Today 53, 225 (1999)CrossRefGoogle Scholar
  52. 52.
    M.-O. Coppens, G.F. Froment, Chem. Eng. Sci. 49, 4897 (1994)CrossRefGoogle Scholar
  53. 53.
    P. Trogadas, V. Ramani, P. Strasser, T.F. Fuller, M.-O. Coppens, Angew. Chemie - Int. Ed. 55, 122 (2016)CrossRefGoogle Scholar
  54. 54.
    P. Trogadas, M.M. Nigra, M.-O. Coppens, New J. Chem. 40, 4016 (2016)CrossRefGoogle Scholar
  55. 55.
    M.-O. Coppens, Curr. Opin. Chem. Eng. 1, 281 (2012)CrossRefGoogle Scholar
  56. 56.
    M.-O. Coppens, in Multiscale Methods Multiscale Methods Bridging the Scales in Science and Engineering, ed. by J. Fish (Oxford University Press, New York, 2010), pp. 536–559Google Scholar
  57. 57.
    S. Weiner, H.D. Wagner, Annu. Rev. Mater. Sci. 28, 271 (1998)ADSCrossRefGoogle Scholar
  58. 58.
    J.Y. Rho, L. Kuhn-Spearing, P. Zioupos, Med. Eng. Phys. 20, 92 (1998)CrossRefGoogle Scholar
  59. 59.
    P. Fratzl, R. Weinkamer, Prog. Mater Sci. 52, 1263 (2007)CrossRefGoogle Scholar
  60. 60.
  61. 61.
  62. 62.
  63. 63.
  64. 64.
    E.R. Weibel, Morphometry of the Human Lung (Springer, Berlin, 1963)CrossRefGoogle Scholar
  65. 65.
    E.R. Weibel, The Pathway for Oxygen (Harvard University Press, Cambridge, MA, 1984)Google Scholar
  66. 66.
    S. Gheorghiu, S. Kjelstrup, P. Pfeifer, M.-O. Coppens, in Fractals in Biology and Medicine, ed. by T.F. Nonnenmacher, G.A. Losa, E.R. Weibel (Springer, Birkhäuser, 2005), pp. 31–42CrossRefGoogle Scholar
  67. 67.
    C. Hou, S. Gheorghiu, M.-O. Coppens, V.H. Huxley, P. Pfeifer, in Fractals in Biology and Medicine, ed. by T.F. Nonnenmacher, G.A. Losa, E.R. Weibel (Springer, Birkhäuser, 2005), pp. 17–30CrossRefGoogle Scholar
  68. 68.
    E.R. Weibel, Am. J. Physiol. 261, L361 (1991)Google Scholar
  69. 69.
    C.D. Murray, Proc. Natl. Acad. Sci. U. S. A. 12, 207 (1926)ADSCrossRefGoogle Scholar
  70. 70.
    C.D. Murray, Proc. Natl. Acad. Sci. U. S. A. 12, 299 (1926)ADSCrossRefGoogle Scholar
  71. 71.
    F.J. Keil, C. Rieckmann, Chem. Eng. Sci. 54, 3485 (1994)Google Scholar
  72. 72.
    S. van Donk, A.H. Janssen, J.H. Bitter, K.P. de Jong, Catal. Rev. Eng. 45, 297 (2003)CrossRefGoogle Scholar
  73. 73.
    S. Gheorghiu, M.-O. Coppens, AIChE J. 50, 812 (2004)CrossRefGoogle Scholar
  74. 74.
    G. Wang, E. Johannessen, C.R. Kleijn, S.W. de Leeuw, M.-O. Coppens, Chem. Eng. Sci. 62, 5110 (2007)CrossRefGoogle Scholar
  75. 75.
    G. Wang, M.-O. Coppens, Chem. Eng. Sci. 65, 2344 (2010)CrossRefGoogle Scholar
  76. 76.
    G. Wang, M.-O. Coppens, Ind. Eng. Chem. Res. 47, 3847 (2008)CrossRefGoogle Scholar
  77. 77.
    E. Johannessen, G. Wang, M.-O. Coppens, Ind. Eng. Chem. Res. 46, 4245 (2007)CrossRefGoogle Scholar
  78. 78.
    S.M. Rao, M.-O. Coppens, Chem. Eng. Sci. 83, 66 (2012)CrossRefGoogle Scholar
  79. 79.
    S.M. Rao, M.-O. Coppens, Ind. Eng. Chem. Res. 49, 11087 (2010)CrossRefGoogle Scholar
  80. 80.
    J. Wang, J.C. Groen, W. Yue, W. Zhou, M.-O. Coppens, J. Mater. Chem. 18, 468 (2008)CrossRefGoogle Scholar
  81. 81.
    J. Wang, W. Yue, W. Zhou, M.-O. Coppens, Microporous Mesoporous Mater. 120, 19 (2009)CrossRefGoogle Scholar
  82. 82.
    J. Kärger, S. Vasenkov, Microporous Mesoporous Mater. 85, 195 (2005)CrossRefGoogle Scholar
  83. 83.
    G. Ye, X. Duan, K. Zhu, X. Zhou, M.-O. Coppens, W. Yuan, Chem. Eng. Sci. 132, 108 (2015)CrossRefGoogle Scholar
  84. 84.
    F.J. Keil, C. Rieckmann, Hung. J. Ind. Chem. 21, 277 (1993)Google Scholar
  85. 85.
    C. Rieckmann, T. Duren, F.J. Keil, Hung. J. Ind. Chem. 25, 137 (1997)Google Scholar
  86. 86.
    G. Ye, X. Zhou, M.-O. Coppens, W. Yuan, AIChE J. 62, 451 (2016)CrossRefGoogle Scholar
  87. 87.
    G. Ye, X. Zhou, M.-O. Coppens, J. Zhou, W. Yuan, AIChE J. 63, 78 (2017)CrossRefGoogle Scholar
  88. 88.
    W.H.J. Hogarth, J.B. Benziger, J. Power Sour. 159, 968 (2006)ADSCrossRefGoogle Scholar
  89. 89.
    J. Larminie, A. Dicks, Fuel Cell Systems Explained, 2nd edn. (Wiley, Chichester, 2003)CrossRefGoogle Scholar
  90. 90.
    S. Kjelstrup, M.-O. Coppens, J.G. Pharoah, P. Pfeifer, Energy Fuels 24, 5097 (2010)CrossRefGoogle Scholar
  91. 91.
    J.P. Kloess, X. Wang, J. Liu, Z. Shi, L. Guessous, J. Power Sour. 188, 132 (2009)ADSCrossRefGoogle Scholar
  92. 92.
    R. Roshandel, F. Arbabi, G.K. Moghaddam, Renew. Energy 41, 86 (2012)CrossRefGoogle Scholar
  93. 93.
    A. Arvay, J. French, J.C. Wang, X.H. Peng, A.M. Kannan, Int. J. Hydrogen Energy 38, 3717 (2013)CrossRefGoogle Scholar
  94. 94.
    K.A. McCulloh, J.S. Sperry, R.A. Frederick, Nature 421, 939 (2003)ADSCrossRefGoogle Scholar
  95. 95.
    P. Domachuk, K. Tsioris, F.G. Omenetto, D.L. Kaplan, Adv. Mater. 22, 249 (2010)CrossRefGoogle Scholar
  96. 96.
    T.F. Sherman, J. Gen. Physiol. 78, 431 (1981)CrossRefGoogle Scholar
  97. 97.
    B. Ramos-Alvarado, A. Hernandez-Guerrero, F. Elizalde-Blancas, M.W. Ellis, Int. J. Hydrogen Energy 36, 12965 (2011)CrossRefGoogle Scholar
  98. 98.
    P. Trogadas, J.I.S. Cho, T.P. Neville, J. Marquis, B. Wu, D.J.L. Brett, M.-O. Coppens, Energy Environ. Sci. doi:  10.1039/c7ee02161e (2017)
  99. 99.
    J. Marquis, M.-O. Coppens, Chem. Eng. Sci. 102, 151 (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity College LondonLondonUK
  2. 2.State Key Laboratory of Chemical EngineeringEast China University of Science and TechnologyShanghaiChina

Personalised recommendations