Advertisement

Diffusive Spreading of Molecules in Nanoporous Materials

  • Christian Chmelik
  • Jürgen Caro
  • Dieter Freude
  • Jürgen Haase
  • Rustem Valiullin
  • Jörg KärgerEmail author
Chapter

Abstract

Nanoporous materials are employed in numerous technologies of matter upgrading by mass separation and conversion (heterogeneous catalysis). The chapter deals with the measurement of guest diffusion in such materials and, thus, with the determination of a key parameter for performance enhancement of these technologies. The introduction of two “microscopic” measuring techniques (PFG NMR and microimaging), which are in the focus of this chapter, gave rise to a paradigm shift in our understanding of mass transfer in such materials. Nanoporous host-guest systems are, moreover, shown to serve as an ideal model system for investigating spreading phenomena quite in general. Ample options of investigation range from the comparison of equilibrium and non-equilibrium phenomena towards the investigation of conversions of both the spreading individuals and their environment.

References

  1. 1.
    J. Kärger, D.M. Ruthven, D.N. Theodorou, Diffusion in Nanoporous Materials (Wiley-VCH, Weinheim, 2012)CrossRefGoogle Scholar
  2. 2.
    G. Ertl, H. Knözinger, F. Schüth, J. Weitkamp (eds.), Handbook of Heterogeneous Catalysis, vol. 3, 2nd edn. (Wiley-VCH, Weinheim, 2008)Google Scholar
  3. 3.
    F. Schüth, K.S.W. Sing, J. Weitkamp (eds.), Handbook of Porous Solids (Wiley-VCH, Weinheim, 2002)Google Scholar
  4. 4.
    J. Weitkamp, Solid State Ionics 131, 175 (2000)CrossRefGoogle Scholar
  5. 5.
  6. 6.
    J. Kärger, C. Chmelik, R. Valiullin, Phys. J. 12, 39 (2013)Google Scholar
  7. 7.
    J. Kärger, ChemPhysChem 16, 24 (2015)CrossRefGoogle Scholar
  8. 8.
    P.T. Callaghan, Translational Dynamics and Magnetic Resonance (Oxford University Press, Oxford, 2011)CrossRefGoogle Scholar
  9. 9.
    J. Kärger, W. Heink, J. Magn. Reson. 51, 1 (1983)ADSGoogle Scholar
  10. 10.
    R. Kimmich, Principles of Soft-Matter Dynamics (Springer, London, 2012)CrossRefGoogle Scholar
  11. 11.
    C. Chmelik, J. Kärger, Chem. Soc. Rev. 39, 4864 (2010)CrossRefGoogle Scholar
  12. 12.
    T. Titze et al., Angew. Chem. Int. Ed. 54, 14580 (2015)CrossRefGoogle Scholar
  13. 13.
    J. Kärger et al., Nat. Mater. 13, 333 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    C. Chmelik et al., Phys. Rev. Lett. 104, 85902 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    R. Krishna, Micropor. Mesopor. Mater. 185, 30 (2014)CrossRefGoogle Scholar
  16. 16.
    P. Kortunov et al., J. Phys. Chem. B 110, 23821 (2006)CrossRefGoogle Scholar
  17. 17.
    C. Chmelik et al., ChemPhysChem 10, 2623 (2009)CrossRefGoogle Scholar
  18. 18.
    J. Kärger, D.M. Ruthven, New J. Chem. 40, 4027 (2016)CrossRefGoogle Scholar
  19. 19.
    (a) L. Heinke, P. Kortunov, D. Tzoulaki, J. Kärger, Phys. Rev. Lett. 99, 228301 (2007); (b) L. Heinke, J. Kärger, Phys. Rev. Lett. 106, 74501 (2011); (c) J. Cousin Saint Remi et al., Nat. Mater. 10 (2015); (d) J.C.S. Remi et al., Nat. Mater. 15, 401 (2015)Google Scholar
  20. 20.
    (a) J. Crank, The Mathematics of Diffusion (Clarendon Press, Oxford, 1975); (b) H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids (Oxford Science Publications, Oxford, 2004)Google Scholar
  21. 21.
    (a) J. Philibert, Atom Movement —Diffusion and Mass Transfer in Solids (Les Editions de Physique, Les Ulis, Cedex A, 1991); (b) H. Mehrer, Diffusion in Solids (Springer, Berlin, 2007)Google Scholar
  22. 22.
    J.M. van Bemmelen, Z. Anorg, Allg. Chem. 13, 233 (1897)Google Scholar
  23. 23.
    J.C. Maxwell, Philos. Mag. 19, 19 (1860)Google Scholar
  24. 24.
    J. Stefan, Wien Ber. 65, 323 (1872)Google Scholar
  25. 25.
    A. Einstein, Ann. Phys. 19, 371 (1906)CrossRefGoogle Scholar
  26. 26.
    S.R. DeGroot, P. Mazur, Non-Equilibrium Thermodynamics (Elsevier, Amsterdam, 1962)Google Scholar
  27. 27.
    R.M. Barrer, W. Jost, Trans. Faraday Soc. 45, 928 (1949)CrossRefGoogle Scholar
  28. 28.
    J. Kärger, Surf. Sci. 57, 749 (1976)ADSCrossRefGoogle Scholar
  29. 29.
    (a) R.M. Barrer, Adv. Chem. Ser. 102, 1 (1971); (b) R.M. Barrer, Zeolites and Clay Minerals as Sorbents and Molecular Sieves (Academic Press, London, 1978)Google Scholar
  30. 30.
    L.S. Darken, Trans. Am. Inst. Mining Metall. Eng. 175, 184 (1948)Google Scholar
  31. 31.
    I. Prigogine, The End of Certainty (The Free Press, New York, London, Toronto, Sydney, 1997)Google Scholar
  32. 32.
    F. Salles et al., Angew. Chem. Int. Ed. 121, 8485 (2009)CrossRefGoogle Scholar
  33. 33.
    (a) R.Q. Snurr, J. Kärger, J. Phys. Chem. B 101, 6469 (1997); (b) F. Rittig, C.G. Coe, J.M. Zielinski, J. Phys. Chem. B 107, 4560 (2003)Google Scholar
  34. 34.
    S. Beckert et al., J. Phys. Chem. C 117, 24866 (2013)CrossRefGoogle Scholar
  35. 35.
    D. Freude et al., Micropor. Mesopor. Mater. 172, 174 (2013)CrossRefGoogle Scholar
  36. 36.
    (a) J. Caro, Micropor. Mesopor. Mater. 125, 79 (2009); (b) H. Bux et al., J. Membr. Sci. 369, 284 (2011)Google Scholar
  37. 37.
    H. Bux et al., Adv. Mater. 22, 4741 (2010)CrossRefGoogle Scholar
  38. 38.
    (a) C. Chmelik, A. Mundstock, P.D. Dietzel, J. Caro, Micropor. Mesopor. Mater. 183, 117 (2014); (b) U. Hong, J. Kärger, H. Pfeifer, J. Am. Chem. Soc. 113, 4812 (1991); (c) C. Chmelik, D. Freude, H. Bux, J. Haase, Micropor. Mesopor. Mater. 147, 135 (2012)Google Scholar
  39. 39.
    A. Lauerer et al., Nat. Commun. 6, 7697 (2015)CrossRefGoogle Scholar
  40. 40.
    J. Kärger, Nachr. Chem. 64, 620 (2016)CrossRefGoogle Scholar
  41. 41.
    H.W. Habgood, Can. J. Chem. 36, 1384 (1958)CrossRefGoogle Scholar
  42. 42.
    J. Kärger, M. Bülow, Chem. Eng. Sci. 30, 893 (1975)CrossRefGoogle Scholar
  43. 43.
    T. Titze et al., J. Phys. Chem. C 118, 2660 (2014)CrossRefGoogle Scholar
  44. 44.
    T. Titze et al., Angew. Chem. Int. Ed. 54, 5060 (2015)CrossRefGoogle Scholar
  45. 45.
    J. García-Martínez, K. Li (eds.), Mesoporous Zeolites. Preparation, Characterization and Applications (Wiley-VCH, Weinheim, 2015)Google Scholar
  46. 46.
    S. Mitchell et al., Nat. Commun. 6, 8633 (2015)CrossRefGoogle Scholar
  47. 47.
    M.O. Coppens, Nature Inspired Chemical Engineering (Inaugural Lecture) (Delft University Press, Delft, 2003)Google Scholar
  48. 48.
    D. Schneider et al., Chem. Ingen. Technol. 87, 1794 (2015)CrossRefGoogle Scholar
  49. 49.
    D. Mehlhorn et al., ChemPhysChem 13, 1495 (2012)CrossRefGoogle Scholar
  50. 50.
    J. Klafter, I.M. Sokolov, Phys. World August, 29 (2005)Google Scholar
  51. 51.
    P.S. Burada et al., ChemPhysChem 10, 45 (2009)CrossRefGoogle Scholar
  52. 52.
    N. Leibovich, E. Barkai, Phys. Rev. E 88, 32107 (2013)ADSCrossRefGoogle Scholar
  53. 53.
    (a) K. Hahn, J. Kärger, V. Kukla, Phys. Rev. Lett. 76, 2762 (1996); (b) V. Kukla et al., Science. 272, 702 (1996)Google Scholar
  54. 54.
    (a) J. Kärger, Phys. Rev. E 47, 1427 (1993); (b) M. Kollmann, Phys. Rev. Lett. 90, 180602 (2003)Google Scholar
  55. 55.
    (a) K. Hahn, J. Kärger, J. Phys. Chem. 102, 5766 (1998); (b) P.H. Nelson, S.M. Auerbach, J. Chem. Phys. 110, 9235 (1999)Google Scholar
  56. 56.
    J. Kärger, K. Hahn, V. Kukla, C. Rödenbeck, Phys. Blätter 54, 811 (1998)CrossRefGoogle Scholar
  57. 57.
    S. Vasenkov, J. Kärger, Phys. Rev. E 66, 52601 (2002)ADSCrossRefGoogle Scholar
  58. 58.
    F.J. Keil, R. Krishna, M.O. Coppens, Rev. Chem. Eng. 16, 71 (2000)CrossRefGoogle Scholar
  59. 59.
    H. Jobic, D. Theodorou, Micropor. Mesopor. Mater. 102, 21 (2007)CrossRefGoogle Scholar
  60. 60.
    (a) D.M. Ruthven, S. Brandani, M. Eic, in Adsorption and Diffusion, ed. by H.G. Karge, J. Weitkamp (Springer, Berlin, Heidelberg, 2008), p. 45; (b) J. van den Bergh, J. Gascon, F. Kapteijn, in Zeolites and Catalysis: Synthesis, Reactions and Applications, ed. by J. Cejka, A. Corma, S. Zones (Wiley-VCH, Weinheim, 2010), p. 361Google Scholar
  61. 61.
    C. Bräuchle, D.C. Lamb, J. Michaelis (eds.), Single Particle Tracking and Single Molecule Energy Transfer (Wiley-VCH, Weinheim, 2010)Google Scholar
  62. 62.
    E. Stavitski, B.M. Weckhuysen, Chem. Soc. Rev. 39, 4615 (2010)CrossRefGoogle Scholar
  63. 63.
    G.D. Birkhoff, Proc. Nat. Acad. Sci. 17, 656 (1931)ADSCrossRefGoogle Scholar
  64. 64.
    F. Feil et al., Angew. Chem. Int. Ed. 51, 1152 (2012)CrossRefGoogle Scholar
  65. 65.
    (a) R. Valiullin et al., Nature 430, 965 (2006); (b) S. Naumov, R. Valiullin, P. Monson, J. Kärger, Langmuir 24, 6429 (2008); (c) D. Schneider, R. Valiullin, P.A. Monson, Langmuir 30, 1290 (2014); (d) D. Kondrashova, R. Valiullin, J. Phys. Chem. C 119, 4312 (2015)Google Scholar
  66. 66.
    (a) A. Lauerer et al., Micropor. Mesopor. Mater. 214, 143 (2015); (b) D. Kondrashova et al., Sci. Rep. 7, 40207 (2017)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Christian Chmelik
    • 1
  • Jürgen Caro
    • 2
  • Dieter Freude
    • 1
  • Jürgen Haase
    • 1
  • Rustem Valiullin
    • 1
  • Jörg Kärger
    • 1
    Email author
  1. 1.Faculty of Physics and Earth SciencesLeipzig UniversityLeipzigGermany
  2. 2.Institute of Physical Chemistry and ElectrochemistryLeibniz University HanoverHanoverGermany

Personalised recommendations