Skip to main content

Robust Variational Auto-Encoder for Radar HRRP Target Recognition

  • Conference paper
  • First Online:
Intelligence Science and Big Data Engineering (IScIDE 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10559))

Abstract

Traditional deep networks used for radar High-Resolution Range Profile (HRRP) target recognition usually ignore the inherent characteristics of the target, which result in the limited capability to learn effective features for classification task. To address this issue, a novel nonlinear feature learning method, called Robust Variational Auto-Encoder model (RVAE) is proposed. According to the stable physical properties of the average profile in each HRRP frame without migration through resolution cell, RVAE is developed based on variational auto-encoder, and such model is able to not only explore the latent representations of HRRP but reserve structure characteristics of the HRRP frame. We use the measured HRRP data to show the effectiveness and efficiency of our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, B., Liu, H.W., Chai, J., Bao, Z.: Large margin feature weighting method via linear programming. IEEE Trans. Knowl. Data Eng. 21(10), 1475–1488 (2009)

    Article  Google Scholar 

  2. Du, L., Liu, H.W., Bao, Z., Zhang, J.Y.: Radar automatic target recognition using complex high-resolution range profiles. Proc. IET Radar Sonar Navig. 1(1), 18–26 (2007)

    Article  Google Scholar 

  3. Du, L., Liu, H.W., Wang, P.H., Feng, B., Pan, M., Chen, F., Bao, Z.: Noise robust radar HRRP target recognition based on multitask factor analysis with small training data size. IEEE Trans. Sig. Process. 60(7), 3546–3559 (2012)

    Article  MathSciNet  Google Scholar 

  4. Jacobs, S.P.: Automatic target recognition using high-resolution radar range profiles. (Ph.D. dissertation), Washington Univ., St. Louis, MO (1999)

    Google Scholar 

  5. Zhang, X.D., Shi, Y., Bao, Z.: A new feature vector using selected bispectra for signal classification with application in radar target recognition. IEEE Trans. Sig. Process. 49(9), 1875–1885 (2001)

    Article  Google Scholar 

  6. Du, L., Liu, H.W., Bao, Z., Xing, M.D.: Radar HRRP target recognition based on higher-order spectra. IEEE Trans. Sig. Process. 53(7), 2359–2368 (2005)

    Article  MathSciNet  Google Scholar 

  7. Feng, B., Du, L., Liu, H.W., et al.: Radar HRRP target recognition based on K-SVD algorithm. In: Proceedings of the IEEE CIE International Conference on Radar, China, pp. 642–645 (2011)

    Google Scholar 

  8. Molchanov, P., Egiazarian, K., Astola, J., et al.: Classification of aircraft using micro-Doppler bicoherence-based features. IEEE Trans. Aerosp. Electron. Syst. 50(2), 1455–1467 (2014)

    Article  Google Scholar 

  9. Li, H.J., Yang, S.H.: Using range profiles as feature vectors to identify aerospace objects. IEEE Trans. Antennas Propag. 41(3), 261–268 (1993)

    Article  MathSciNet  Google Scholar 

  10. Zyweck, A., Bogner, R.E.: Radar target classification of commercial aircraft. IEEE Trans. Aerosp. Electron. Syst. 32(2), 598–606 (1996)

    Article  Google Scholar 

  11. Liao, X.J., Runkle, P., Carin, L.: Identification of ground targets from sequential high-range-resolution radar signatures. IEEE Trans. Aerosp. Electron. Syst. 38(4), 1230–1242 (2002)

    Article  Google Scholar 

  12. Zhu, F., Zhang, X.D., Hu, Y.F., Xie, D.: Nonstationary hidden Markov models for multiaspect discriminative feature extraction from radar targets. IEEE Trans. Sig. Process. 55(5), 2203–2213 (2007)

    Article  MathSciNet  Google Scholar 

  13. Du, L., Liu, H.W., Bao, Z.: Radar HRRP statistical recognition: parametric model and model selection. IEEE Trans. Sig. Process. 56(5), 1931–1944 (2008)

    Article  MathSciNet  Google Scholar 

  14. Du, L., Wang, P.H., Liu, H.W., Pan, M., Chen, F., Bao, Z.: Bayesian spatiotemporal multitask learning for radar HRRP target recognition. IEEE Trans. Sig. Process. 59(7), 3182–3196 (2011)

    Article  MathSciNet  Google Scholar 

  15. Xing, M.D., Bao, Z., Pei, B.: The properties of high-resolution range profiles. Opt. Eng. 41(2), 493–504 (2002)

    Article  Google Scholar 

  16. Shi, L., Wang, P.H., Liu, H.W., et al.: Radar HRRP statistical recognition with local factor analysis by automatic Bayesian Ying-Yang harmony learning. IEEE Trans. Sig. Process. 59(2), 610–617 (2011)

    Article  MathSciNet  Google Scholar 

  17. Chen, B., Liu, H.W., Bao, Z.: Analysis of three kinds of classification based on different absolute alignment methods. Mod. Radar 28(3), 58–62 (2006)

    Google Scholar 

  18. Feng, B., Chen, B., Liu, H.: Radar HRRP target recognition with deep networks. Pattern Recogn. 61, 379–393 (2017)

    Article  Google Scholar 

  19. Hinton, G., Salakhutdinov, R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  22. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: Proceedings of the International Conference on Learning Representations (ICLR) (2014)

    Google Scholar 

  23. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. In: Proceedings of Neural Information and Processing Systems (2007)

    Google Scholar 

  24. Nair, V., Hinton, G.E.: 3D object recognition with deep belief nets. In: Proceedings of Neural Information and Processing Systems (2009)

    Google Scholar 

  25. Yu, H., Yang, J.: A direct LDA algorithm for high-dimensional data with application to face recognition. Pattern Recogn. 34(10), 2067–2070 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Zhai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zhai, Y., Chen, B., Zhang, H., Wang, Z. (2017). Robust Variational Auto-Encoder for Radar HRRP Target Recognition. In: Sun, Y., Lu, H., Zhang, L., Yang, J., Huang, H. (eds) Intelligence Science and Big Data Engineering. IScIDE 2017. Lecture Notes in Computer Science(), vol 10559. Springer, Cham. https://doi.org/10.1007/978-3-319-67777-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67777-4_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67776-7

  • Online ISBN: 978-3-319-67777-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics