The Famatinian Orogen Along the Protomargin of Western Gondwana: Evidence for a Nearly Continuous Ordovician Magmatic Arc Between Venezuela and Argentina

  • Victor A. Ramos
Part of the Springer Earth System Sciences book series (SPRINGEREARTH)


The continental protomargin of Western Gondwana in South America records an important Early-Middle Ordovician magmatic activity associated with the development of the Famatinian orogen. Almost the entire margin has evidence of a magmatic arc preserved as orthogneisses in the high-grade metamorphic domains up to volcanic rocks of the same age interfingered with sedimentary facies. These subduction-related calcalkaline rocks have new U-Pb zircon dates that show striking similar ages bracketed between 490 and 460 Ma. The different domains along the continental margin are compared taking the western Sierras Pampeanas as the type locality, showing an alternation among high-grade metamorphic—greenschist facies—sedimentary facies. There are three deeply exhumed segments preserved as orthogneisses in high-grade amphibolite facies, the Sierras Pampeanas, the Marañón, and the Santander-Mérida domains. These domains are flanked by greenschist facies such as the Quetame in Colombia, the Vilcabamba in Perú, and the Puna Eruptive Belt in northern Argentina. Some segments are characterized by sedimentary facies as the Altiplano domain of Bolivia and the Olmos-Loja domain between Perú and Ecuador. The location and metamorphic grade are controlled by the amount of shortening and uplift, responsible for the different crustal levels exposed, as a consequence of the characteristics of the distinct terranes that collided against the continental margin. As a final remark, the time span of the Famatinian episode when globally compared has a widespread development in Laurentia, Baltica, and Australia, as a consequence of a period of high mobility of the plates during Early-Middle Ordovician times.


Magmatic arc Terrane collision Subduction related Metamorphic grade Protomargin Paleozoic orogen 



This paper is the result of many field trips, meetings, and symposia held along the Andes from Venezuela to Patagonia. The author thanks numerous colleagues for livid discussions, hard debates, and generous friendship that fed during the years my interest to learn how the Andes work. The critical reviews of the manuscript by Juan Otamendi, Universidad de Río Cuarto, Roberto Martino from Universidad Nacional de Córdoba and Heinrich Bahlburg from Universität Münster are deeply acknowledged. This is the contribution R-208 of the Instituto de Estudios Andinos Don Pablo Groeber (UBA-CONICET).


  1. Aceñolaza FG, Toselli A (1976) Consideraciones estratigráficas y tectónicas sobre el Paleozoico inferior del Noroeste Argentino. 2° Congreso Latinoamericano de Geología (1973), Actas 2:755–763, CaracasGoogle Scholar
  2. Aceñolaza FG, Miller H, Toselli AJ (1996) Geología del Sistema de Famatina. Münchner Geologische Heste, A 19:1–410, MünchenGoogle Scholar
  3. Aleman A, Ramos VA (2000) The Northern Andes. In UJ Cordani, EJ Milani, A Thomaz Filho, DA Campos (eds.) Tectonic evolution of South America, 31° International Geological Congress, 453–480, Río de JaneiroGoogle Scholar
  4. Astini RA, Benedetto JL (1993) A collisional model for the stratigraphic evolution of the Argentine Precordillera during the early Paleozoic. 2° International Symposium on Andean Geodynamics (Oxford), 501–504, ParisGoogle Scholar
  5. Astini RA, Benedetto JL, Vaccari NE (1995) The early Paleozoic evolution of the Argentina Precordillera as a Laurentian rifted, drifted, and collided terrane: a geodynamic model. Geol Soc Am Bull 107(3):253–273CrossRefGoogle Scholar
  6. Astini R, Ramos VA, Benedetto JL, Vaccari NE (1996) La Precordillera: un terreno exótico a Gondwana. 13° Congreso Geológico Argentino y 3° Congreso Exploración de Hidrocarburos (Buenos Aires). Actas 5:293–324Google Scholar
  7. Ávila Salinas W (1992) El magmatismo Cámbrico-Ordovícico en Bolivia. In Gutiérrez-Marco JC, Saavedra J, Rábano I (eds.) Paleozoico Inferior de Iberoamérica, Universidad de Extremadura, 241–253Google Scholar
  8. Bahlburg H (1990) The Ordovician basin in the northern Puna of Argentina and Chile: geodynamic evolution from back-arc to foreland basin. Geotekton Forsch 75:1–107Google Scholar
  9. Bahlburg H, Hervé F (1997) Geodynamic evolution and tectonostratigraphic terranes of NW-Argentina and N-Chile. Geol Soc Am Bull 109:869–884CrossRefGoogle Scholar
  10. Bahlburg H, Berndt J, Gerdes A (2016) The ages and tectonic setting of the Faja Eruptiva de la Puna Oriental, Ordovician, NWArgentina. Lithos 256–257:41–54CrossRefGoogle Scholar
  11. Bahlburg H, Carlotto V, Cárdenas J (2006) Evidence of Early to Middle Ordovician arc volcanism in the Cordillera Oriental and Altiplano of southern Peru, Ollantaytambo formation and Umachiri beds. J South Am Earth Sci 22:52–65CrossRefGoogle Scholar
  12. Beck SL, Zandt G (2002) The nature of orogenic crust in the central Andes. J Geophys Res 107.
  13. Bellizzia A, Pimentel N (1994) Terreno Mérida: un cinturón alóctono herciniano en la Cordillera de Los Andes de Venezuela. 5º Simposio Bolivariano Exploración Petrolera en las Cuencas Subandinas, Memoria, 271–299Google Scholar
  14. Benedetto JL (2004) The allochthony of the Argentine Precordillera ten years later (1993–2003): a new paleogeographic test of the microcontinental model. Gondwana Res 7:1027–1039CrossRefGoogle Scholar
  15. Benedetto JL, Ramírez PE (1985) La secuencia sedimentaria Precámbrico-Paleozoico Inferior pericratónica del extremo norte de Sudamérica y sus relaciones con las cuencas del norte de África. Quinto Congreso Latinoamericano de Geología, Actas 2:411–425Google Scholar
  16. Benedetto JL, Sánchez TM, Carrera MG, Brussa ED, Salas JM (1999) Paleontological constraints on successive paleogeographic positions of Precordillera terrane during the early Paleozoic. In: Ramos VA, Keppie D (eds) Laurentia Gondwana Connections before Pangea. Geological Society of America, Special Paper 336, pp 21–42Google Scholar
  17. Boedo FL, Willner AP, Vujovich GI, Massonne H -J (2016) High-pressure/low-temperature metamorphism in the collision zone between the Chilenia and Cuyania microcontinents (western Precordillera, Argentina). J South Am Earth Sci 72:227–240Google Scholar
  18. Boekhout F, Sempere T, Spikings R, Schaltegger U (2013) Late Paleozoic to Jurassic chronostratigraphy of coastal southern Peru: temporal evolution of sedimentation along an active margin. J S Am Earth Sci 47:179–200CrossRefGoogle Scholar
  19. Brussa ED, Toro BA, Vaccari NE (2008) Bioestratigrafía del Paleozoico inferior en el ámbito de la Puna. In: Coira B, Zappettini EO (eds) Geología y recursos naturales de la provincia de jujuy, 17° Congreso Geológico Argentino, Relatorio, pp 93–97Google Scholar
  20. Cardona A, Cordani UG, MacDonald WD (2006) Tectonic correlations of pre-Mesozoic crust from the northern termination of the Colombian Andes, Caribbean region. J S Am Earth Sci 21:337–354CrossRefGoogle Scholar
  21. Cardona A, Cordani U, Ruiz J, Valencia VA, Armstrong R, Nutman A, Sanchez A (2009) U/Pb zircon and Nd isotopic signatures of the pre-Mesozoic metamorphic basement of the Eastern Peruvian Andes: Growth and provenance of a late Neoproterozoic to Carboniferous accretionary orogen on the Northwest margin of Gondwana. J Geol 117:285–305CrossRefGoogle Scholar
  22. Carlotto V, Quispe J, Acosta H, Rodríguez R, Romero D, Cerpa L, Mamani M, Díaz Martínez E, Navarro P, Jaimes F, Velarde T, Lu S, Cueva E (2009) Dominios geotectónicos y Metalogénesis del Perú. Sociedad Geológica del Perú. Boletín 103:1–90Google Scholar
  23. Castroviejo R, Pereira E, Rodrigues JF, Acosta J, Espi JA (2009) Pre-Andean serpentinite chromite orebodies in the Eastern Cordillera of Central Perú, Tarma province. In: 10th biannual society for geology applied for mineral deposits, vol 2, Townsville, pp 927–929Google Scholar
  24. Castroviejo R, Rodrigues JF, Tassinari C, Pereira E, Acosta J (2010) Ophiolites in the Eastern Cordillera of the central Peruvian Andes. IMA2010: 20th. general meeting of the international mineralogical association, BudapestGoogle Scholar
  25. Chernicoff J, Ramos VA (2004) El basamento de la Sierra de San Luis: nuevas evidencias magnéticas y sus implicancias tectónicas. Revista de la Asociación Geológica Argentina 58(4):511–524Google Scholar
  26. Chernicoff CJ, Zappettini EO, Santos JOS, McNaughton NJ, Belousova E (2013) Combined U-Pb SHRIMP and Hf isotope study of the Late Paleozoic Yaminué Complex, Rio Negro Province, Argentina: Implications for the origin and evolution of the Patagonia composite terrane. Geosci Front 4(1):37–56CrossRefGoogle Scholar
  27. Chew DM, Schaltegger U, Košler J, Whitehouse MJ, Gutjahr M, Spikings RA, Miškovíc A (2007) U-Pb geochronologic evidence for the evolution of the Gondwanan margin of the north-central Andes. Geol Soc Am Bull 119:697–711CrossRefGoogle Scholar
  28. Chew DM, Pedemonte G, Corbett E (2016) Proto-Andean evolution of the Eastern Cordillera of Peru. Gondwana Res 35:59–78CrossRefGoogle Scholar
  29. Coira BL (2008) El volcanismo del Paleozoico inferior de la Puna Jujeña. In: Coira B, Zappettini EO (eds) Geología y Recursos Naturales de la provincia de Jujuy, 17º Congreso Geológico Argentino, Relatorio, Jujuy, pp 140–154Google Scholar
  30. Coira BL, Davidson JD, Mpodozis C, Ramos VA (1982) Tectonic and magmatic evolution of the Andes of Northern Argentina and Chile. Earth Sci Rev 18(3–4):303–332CrossRefGoogle Scholar
  31. Coira BL, Mahlburg Kay S, Pérez B, Woll B, Hanning M, Flores P (1999) Magmatic sources and tectonic setting of Gondwana margin Ordovician magmas, northern Puna of Argentina and Chile. In: Ramos VA, Keppie D (eds) Laurentia Gondwana Connections before Pangea. Geological Society of America, Special Paper 336, pp 145–170Google Scholar
  32. Coira B, Koukharsky M, Ribeiro Guevara S, Cisterna CE (2009) Puna (Argentina) and Northern Chile Ordovician basic magmatism: A contribution to the tectonic setting. J S Am Earth Sci 27:24–35CrossRefGoogle Scholar
  33. Collo G, Astini RA, Cawood P, Buchan C, Prmentel M (2009) U-Pb detrital zircon ages and Sm-Nd isotq:ic features in low-grade metasedimentary rocks of the Famatina belt: implications for late Neoproterozoic – early Palaeozoic evolution of the proto-Andean margin of Gondwana. J Geol Soc 116:1–17Google Scholar
  34. Dahlquist JA, Rapela CW, Panhurst RJ, Baldo EG, Saavedra J, Alasino PH (2005) Los granitoides de la sierra de Chepes y su comparación con granitoides paleozoicos de las Sierras Pampeanas: implicancias para el orógeno famatiniano. Asociación Geológica Argentina, Serie D: Publicación Especial 8:87–108Google Scholar
  35. Dahlquist JA, Galindo C, Pankhurst RJ, Rapela CW, Alasino PH, Saavedra J, Fanning CM (2007) Magmatic evolution of the Peñón Rosado granite: petrogenesis of garnet-bearing granitoids. Lithos 95:177–207CrossRefGoogle Scholar
  36. Dahlquist JA, Panhurst RJ, Rapela CW, Galindo C, Alasino PH, Fanning CM, Saavedra J, Baldo EG (2008) New SHRIMP U-Pb data from the Famatina Complex: Constraining Early-Mid Ordovician Famatinian magmatism in the Sierras Pampeanas, Argentina. Geol Acta 6(4):319–333Google Scholar
  37. Dahlquist JA, Pankhurst RJ, Gaschnig RM, Rapela CW, Casquet C, Alasino PH, Galindo C, Baldo EG (2013) Hf and Nd isotopes in Early Ordovician to Early Carboniferous granites as monitors of crustal growth in the Proto-Andean margin of Gondwana. Gondwana Res 23:1617–1630CrossRefGoogle Scholar
  38. de Almeida FFM, Hasui Y, Brito Neves BB (1976) The Upper Precambrian of South America. Universidade de Sao Paulo, Instituto de Geociencias, Boletim 7:45–80Google Scholar
  39. Dorbath C, Granet M, Poupinet G, Martinez C (1993) A teleseismic study of the Altiplano and the Eastern Cordillera in northern Bolivia: new constraints on a lithospheric model. J Geophys Res 98(B6):9825–9844CrossRefGoogle Scholar
  40. Dorbath C, Granet M (1996) Local earthquake tomography of the Altiplano and the Eastern Cordillera of northern Bolivia. Tectonophysics 259:117–136CrossRefGoogle Scholar
  41. Ducea MN, Otamendi JE, Bergantz G, Stair KM, Valencia VA, Gehrels GE (2010) Timing constraints on building an intermediate plutonic arc crustal section: U-Pb zircon geochronology of the Sierra Valle Fértil–La Huerta, Famatinian arc, Argentina. Tectonics 29(TC4002):21–22Google Scholar
  42. Egenhoff SO (2007) Life and death of a Cambrian-Ordovician basin: an Andean three act play featuring Gondwana and the Arequipa-Antofalla terrane. Geol Soc Am Spec Pap 423:511–524Google Scholar
  43. Fernández C, Becchio R, Castro A, Viramonte JM, Moreno-Ventas I, Corretgé LG (2008) Massive generation of atypical ferrosilicic magmas along the Gondwana active margin: Implications for cold plumes and back-arc magma generation. Gondwana Res 14:451–473CrossRefGoogle Scholar
  44. Forero Suárez A (1990) The basement of the Eastern Cordillera, Colombia: an allochthonous terrane in northwestern South America. J S Am Earth Sci 3(2):141–151CrossRefGoogle Scholar
  45. Gómez Tapias J, Montes Ramírez NE, Alcárcel Gutiérrez FA, Ceballos Hernández JA (2015) Catálogo de dataciones radiométricas de Colombia en ArcGIS 63 y Google Earth. In: Gómez Tapias J, Almanza Meléndez MF (eds) Compilando la geología de Colombia: Una visión a 2015, Servicio Geológico Colombiano, Bogotá, pp 63–420Google Scholar
  46. González PD, Tortello F, Damborenea S (2011) Early Cambrian archaeocyathan limestone blocks in low-grade metaconglomerate from El Jagüelito Formation (Sierra Grande, Río Negro, Argentina). Geologica Acta 9:159–173Google Scholar
  47. Grösser JR, Prössl KF (1991) First evidence of the Silurian in Colombia: Palynostratigraphic data from the Quetame Massif, Cordillera Oriental. J S Am Earth Sci 4(3):231–238CrossRefGoogle Scholar
  48. Haller MA, Ramos VA (1984) Las ofiolitas famatinianas (Eopaleozoico) de las provincias de San Juan y Mendoza. 9° Congreso Geológico Argentino (S.C. Bariloche). Actas 2:66–83Google Scholar
  49. Harrington JH, Kay M (1951) Cambrian and Ordovician Fauna of eastern Colombia. J Paleontol 25:655–668Google Scholar
  50. Herbert H (1977) Petrochemie und Ausgangmaterial von Grünschefren aus der E-cordillere Ecuadors. Fortschr Mineral 55(1):45–46Google Scholar
  51. Horton BK, Saylor JE, Nie J, Mora A, Parra M, Reyes-Harker A (2010) Linking sedimentation in the northern Andes to basement configuration, Mesozoic extension, and Cenozoic shortening: Evidence from detrital zircon U-Pb ages, Eastern Cordillera, Colombia. Geol Soc Am Bull 122(9–10):1423–1442CrossRefGoogle Scholar
  52. ICS-IUGS Geological Time Table (2016) In:
  53. Kay SM, Coira B (2009) Shallowing and Steepening Subduction Zones, Continental Lithosphere Loss, Magmatism and Crustal Flow under the Central Andean Altiplano-Puna Plateau. In: Kay S, Ramos VA, Dickinson W (eds) Backbone of the Americas, Geological Society of América, vol 204, Memoir, pp 229–259Google Scholar
  54. Litherland M, Aspden JA, Jemielita RA (1994) The metamorphic belts of Ecuador. Brit Geol Surv Overseas Mem 11:1–146Google Scholar
  55. Loewy SL, Connelly JN, Dalziel IWD (2004) An orphaned basement block: the Arequipa-Antofalla basement of the central Andean margin of South America. Geol Soc Am Bull 116:171–187CrossRefGoogle Scholar
  56. Lork A, Bahlburg E (1993) Precise U-Pb ages of monazites from the Faja Eruptiva de la Puna Oriental, NW Argentina. 12º Congreso Geológico Argentino y 2º Congreso Exploración de Hidrocarburos, Actas, vol 4, Buenos Aires, pp 1–6Google Scholar
  57. Mantilla Figueroa LC, Ordóñez-Carmona JJ, García-Ramírez CA, Valencia VA (2016) Nuevas evidencias que soportan la escisión de la formación Silgará y propuesta de un nuevo marco estratigráfico para el basamento metamórfico del Macizo de Santander (Cordillera Oriental de Colombia). Revista Academia Colombiana de Ciencias Exactas Físicas y Naturales 40(155):320–336CrossRefGoogle Scholar
  58. Martens U, Restrepo O, Correa-Martínez AM (2014) The Tahamí and Anacona Terranes of the Colombian Andes: Missing Links between the South American and Mexican Gondwana Margins. J Geol 122:507–530CrossRefGoogle Scholar
  59. Martínez C, Dorbath C, Lavenu A (1994) La cuenca subsidente cenozoica noraltiplánica y sus relaciones con una subducción transcurrente continental. 12º Congreso Geológico de Bolivia, Actas, Tarija, pp 3–28Google Scholar
  60. Martínez M, Brussa E, Pérez B, Coira B (1999) El Ordovícico de la sierra de Quichagua (Puna nororiental argentina): litofacies volcanosedimentarias y graptofaunas. 14º Congreso Geológico Argentino (Salta). Actas 1:347–350Google Scholar
  61. Martino RD, Simpson C, Law RD (1993) Taconic (Ocloyic) aged west-directed ductile thrusts in basement rocks of the Sierras Pampeanas, Argentina. Geological Society of America, Abstracts with Program A-233Google Scholar
  62. Méndez V, Navarini A, Plaza D, Viera O (1973) Faja eruptiva de la puna oriental. 5° Congreso Geológico Argentino (Córdoba), Actas 4:89–100Google Scholar
  63. Moya MC (2015) La “Fase Oclóyica” (Ordovícico Superior) en el noroeste argentino. Interpretación histórica y evidencias en contrario. Serie Correlación Geológica 31(1):73–110Google Scholar
  64. Murphy JB, Keppie JD, Dostal J, Nance RD (1999) Neoproterozoic-Early Paleozoic evolution of Avalonia. In: Ramos VA, Keppie D (eds) Laurentia Gondwana Connections before Pangea. Geological Society of America, Special Paper 336, pp 253–266Google Scholar
  65. Murphy JB, Gutiérrez-Alonso G, Nance RD, Fernández-Suárez J, Keppie JD, Quesada C, Strachan RA, Dostal J (2006) Origin of the Rheic Ocean: Rifting along a Neoproterozoic suture? Geology 34:325–328CrossRefGoogle Scholar
  66. Niemeyer RH (1989) El Complejo ígneo-sedimentario del Cordón de La Lila, Región de Antofagasta: Estratigrafía y significado tectónico. Revista Geológica de Chile 16(2):163–182Google Scholar
  67. Ogg JG, Ogg GM, Gradstein FM (2016) A concise geologic time scale. Elsevier, 235 ppGoogle Scholar
  68. Ordóñez-Carmona O, Restrepo JJ, Álvarez A, Pimentel MM (2006) Geochronological and isotopical review of pre-Devonian crustal basement of the Colombian Andes. J S Am Earth Sci 21:372–382CrossRefGoogle Scholar
  69. Otamendi JE, Tibaldi AM, Vujovich GI, Viñao GA (2008) Metamorphic evolution of migmatites from the deep Famatinian arc crust exposed in Sierras Valle Fértil e La Huerta, San Juan, Argentina. J S Am Earth Sci 25:313–335CrossRefGoogle Scholar
  70. Otamendi JE, Vujovich GI, de la Rosa JD, Tibaldi AM, Castro A, Martino RD (2009a) Geology and petrology of a deep crustal zone from the Famatinian paleo-arc, Sierras Valle Fértil-la Huerta, San Juan, Argentina. J S Am Earth Sci 27:258–279CrossRefGoogle Scholar
  71. Otamendi JE, Ducea MN, Tibaldi AM, Bergantz G, de la Rosa JD, Vujovich GI (2009b) Generation of tonalitic and dioritic magmas by coupled partial melting of gabbroic and metasedimentary rocks within the deep crust of the Famatinian magmatic arc, Argentina. J Petrol 50:841–873CrossRefGoogle Scholar
  72. Otamendi JE, Cristofolini E, Tibaldi AM, Quevedo F, Baliani I (2010) Petrology of mafic and ultramafic layered rocks from the Jaboncillo Valley, Sierra de Valle Fértil, Argentina: implications for the evolution of magmas in the lower crust of the Famatinian arc. J S Am Earth Sci 29:685–704CrossRefGoogle Scholar
  73. Otamendi JE, Ducea MN, Bergantz GW (2012) Geological, petrological and geochemical evidence for progressive construction of an arc crustal section, Sierra de Valle Fertil, Famatinian Arc, Argentina. J Petrol 53:761–800CrossRefGoogle Scholar
  74. Pankhurst R, Rapela C, Saavedra J, Baldo E, Dahlquist J, Pascua I (1996) Sierra de Los Llanos, Malanzán, and Chepes: Ordovician I and S-type granitic magmatism in the Famatinuan orogen. 13º Congreso Geológico Argentino and 3º Congreso de Exploración de Hidrocarburos, Actas 5: 415, Buenos AiresGoogle Scholar
  75. Pankhurst R, Rapela C, Saavedra J, Baldo E, Dahlquist J, Pascua I, Fanning CM (1998) The Famatinian magmatic arc in the Central Sierras Pampeanas: an Early to mid-Ordovician continental arc on the Gondwana margin. In: Pankhurst RJ, Rapela CW (eds) The Proto-Andean margin of Gondwana, vol 142, Geological Society of London, Special Publication, pp 343–367Google Scholar
  76. Pankhurst R, Rapela C, Fanning CM (2000) Age and origin of coeval TTG, I- and S-type granites in the Famatinian belt of NW Argentina. Trans R Soc Edinb Earth Sci 91:151–168CrossRefGoogle Scholar
  77. Pankhurst RJ, Rapela CW, Fanning CM, Márquez M (2006) Gondwanide continental collision and the origin of Patagonia. Earth-Sci Rev 76:235–257CrossRefGoogle Scholar
  78. Pinheiro GM, Pimentel MM, Schalamuk IB (2008) Sm–Nd and LAM-ICPMS U–Pb data for Cambrian/Ordovician rocks of the Calalaste range, NW Argentina. In: 4º South American Symposium on Isotope Geology, Actas Digitales, Bariloche, 4 pGoogle Scholar
  79. Quenardelle S, Ramos VA (1999) The Ordovician western Sierras Pampeanas magmatic belt: record of Argentine Precordillera accretion. In: Ramos VA, Keppie D (eds) Laurentia Gondwana Connections before Pangea. Geological Society of America, Special Paper 336, pp 63–86Google Scholar
  80. Ramos VA (1984) Patagonia: ¿Un continente paleozoico a la deriva? 9° Congreso Geológico Argentino (S.C. Bariloche). Actas 2:311–325Google Scholar
  81. Ramos VA (1986) El Diastrofismo Oclóyico: Un ejemplo de tectónica de colisión durante el Eopaleozoico en el No-roeste Argentino. Revista del Instituto de Geología y Minería (San Salvador de Jujuy) 6:13–28Google Scholar
  82. Ramos VA (1988) The Tectonics of the Central Andes: 30° 33° S latitude. In: Clark S, Burchfiel D, Suppe J (eds) Processes in Continental Lithospheric Deformation, Geological Society of America, Special paper 218, pp 31–54Google Scholar
  83. Ramos VA (2004) Cuyania, an exotic block to Gondwana: review of a historical success and the present problems. Gondwana Res 7(4):1009–1026CrossRefGoogle Scholar
  84. Ramos VA (2008) The basement of the Central Andes: the Arequipa and related terranes. Annual Review on Earth and Planetary Sciences 36:289–324CrossRefGoogle Scholar
  85. Ramos VA (2009) Anatomy and global context of the Andes: Main geologic features and the Andean orogenic cycle. In: Kay SM, Ramos VA, Dickinson W (eds) Backbone of the Americas: Shallow Subduction, Plateau Uplift, and Ridge and Terrane Collision, Geological Society of America, Memoir 204:31–65Google Scholar
  86. Ramos VA (2010) The Grenville-age basement of the Andes. J S Am Earth Sci 29(1):77–91CrossRefGoogle Scholar
  87. Ramos VA, Coira B (2008) Las provincias geológicas de Jujuy. In Coira B, Zappettini EO (eds.) Geología y Recursos Naturales de la Provincia de Jujuy, 17° Congreso Geológico Argentino, Relatorio, pp 11–15Google Scholar
  88. Ramos VA, Jiménez N (2014) Extensión oriental del macizo de Arequipa en los Andes bolivianos: Sus implicancias tectónicas. In Simposio Tectónica preandina, 19º Congreso Geológico Argentino, Actas S21–50, Córdoba, 2 pGoogle Scholar
  89. Ramos VA, Naipauer M (2014) Patagonia: Where does it come from? J Iberian Geology 40(2):367–379CrossRefGoogle Scholar
  90. Ramos VA, Escayola M, Mutti D, Vujovich GI (2000) Proterozoic-early Paleozoic ophiolites in the Andean basement of southern South America. In: Dilek Y, Moores EM, Elthon D, Nicolas A (eds) Ophiolites and oceanic crust: new insights from field studies and ocean drilling program. Geol Soc Am, special paper 349, pp 331–349Google Scholar
  91. Ramos VA, Jordan TE, Allmendinger RW, Mpodozis C, Kay SM, Cortés JM, Palma MA (1986) Paleozoic terranes of the central Argentine Chilean Andes. Tectonics 5(6):855–880CrossRefGoogle Scholar
  92. Ramos VA, Vujovich G, Martino R, Otamendi J (2010) Pampia: a large cratonic block missing in the Rodinia supercontinent. J Geodyn 50:243–255CrossRefGoogle Scholar
  93. Rapela CW, Toselli AJ, Heaman L, Saavedra J (1990) Granite plutonism of Sierras Pampeanas; an inner Cordilleran Paleozoic arc in the southern Andes. In: Kay SM, Rapela CW (eds) Plutonism from Antarctica to Alaska. Geological Society of America, Special paper 241, pp 77–90Google Scholar
  94. Reimann CR, Bahlburg H, Kooijman E, Berndt J, Gerdes A, Carlotto V, Lopez S (2010) Geodynamic evolution of the early Paleozoic Western Gondwana margin 14°–17° S reflected by the detritus of the Devonian and Ordovician basins of southern Peru and northern Bolivia. Gondwana Res 18:370–384CrossRefGoogle Scholar
  95. Reimann CR, Bahlburg H, Carlotto V, Boekhout F, Berndt J, Lopez S (2015) Multi-method provenance model for early Paleozoic sedimentary basins of southern Peru and northern Bolivia (13º–18º S). J S Am Earth Sci 64:94–115CrossRefGoogle Scholar
  96. Reitsma MJ (2012) Reconstructing the Late Paleozoic: Early Mesozoic plutonic and sedimentary record of south-east Peru: orphaned back-arcs along the western margin of Gondwana. PhD thesis, University of Geneva, GeneveGoogle Scholar
  97. Restrepo JJ, Toussaint J-F (1988) Terranes and continental accretion in the Colombian Andes. Episodes 11:189–193Google Scholar
  98. Restrepo-Pace PA (1992) Petrotectonic characterization of the Central Andean Terrane, Colombia. J S Am Earth Sci 5(1):97–116CrossRefGoogle Scholar
  99. Restrepo-Pace PA, Cediel F (2010) Northern South America basement tectonics and implications for paleocontinental reconstructions of the Americas. J S Am Earth Sci 29:764–771CrossRefGoogle Scholar
  100. Restrepo-Pace PA, Ruiz J, Gehrels G, Cosca M (1997) Geochronology and Nd isotopic data of Grenville-age rocks in the Colombian Andes: new constraints for Late Proterozoic-Early Paleozoic paleocontinental reconstructions of the Americas. Earth Planet Sci Lett 150:427–441CrossRefGoogle Scholar
  101. Reyes L, Caldas J (1987) Geología de los cuadrángulos de Las Playas, La Tina, Las Lomas, Ayabaca, San Antonio, Chulucanas, Morropón, Huancabamba, Olmos y Pomahuaca. Boletín Ingemmet 39(A):1–83, LimaGoogle Scholar
  102. Rodrigues J, Acosta J, Castroviejo R, Quispe J, Romero D, Uribe R, Campián M (2010a) Geología y estructura de las ultramafitas de Tapo y Acobamba (Tarma, Perú), removilización tectónica andina de un segmento ofiolítico pre-andino. Sociedad Geológica del Perú, Publicación Especial 9:79–82, CuscoGoogle Scholar
  103. Rodrigues J, Acosta J, Macharé J, Pereira E, Castroviejo R (2010b) Evidencias estructurales de aloctonía de los cuerpos ultramáficos y máficos de la Cordillera Oriental del Perú en la región de Huánuco. Sociedad Geológica del Perú, Publicación Especial 9: 75–78, CuscoGoogle Scholar
  104. Romero D, Valencia K, Alarcón P, Peña D, Ramos VA (2013) The offshore basement of Perú: evidence for different igneous and metamorphic domains in the forearc. J S Am Earth Sci 42:47–60CrossRefGoogle Scholar
  105. Ruiz J, Tosdal RM, Restrepo PA, Murillo-Muñetón G (1999) Pb isotope evidence for Colombia–southern México connections in the Proterozoic. Geological Society of America, Special Papers 336:183–197Google Scholar
  106. Rushton AWA (1962) Paradoxides from Colombia. Geological Magazine 100:255–257Google Scholar
  107. Saavedra J, Toselli A, Rossi J, Pellitero E, Durand F (1998) The Early Palaeozoic magmatic record of the Famatina System: a review. In: Pankhurst RJ, Rapela CW (eds) The Proto-Andean Margin of Gondwana, vol 142, Geological Society of London, Special Publication, pp 283–295Google Scholar
  108. Spikings R, Cochrane R, Villagomez D, Van der Lelij R, Vallejo C, Winkler W, Beate B (2016) The geological history of northwestern South America: from Pangaea to the early collision of the Caribbean Large Igneous Province (290–75 Ma). Gondwana Res 27:95–139CrossRefGoogle Scholar
  109. Stern CR (1991) Role of subduction erosion in the generation of Andean Magmas. Geology 19(1):78–81CrossRefGoogle Scholar
  110. Toro BA, Brussa ED (2003) Graptolites. In: Benedetto JL (ed) Ordovician fossils of Argentina. Secretaría de Ciencia y Tecnología, Universidad Nacional de Córdoba Chapter 11, pp 441–505Google Scholar
  111. Toro BA, Brussa ED, Maletz J (2006) Implicancias bioestratigráficas y paleobiogeográficas de los graptolites de la localidad de Santa Rosa, Puna Oriental, Argentina. 9º Congreso Argentino de Paleontología y Bioestratigrafía, Actas 116, CórdobaGoogle Scholar
  112. Toselli AJ (1982) Criterios de definición del metamorfismo de muy bajo grado. Con especial énfasis en el perfil de Falda Ciénaga, Puna de Catamarca. Asociación Geológica Argentina 37(2):205–213Google Scholar
  113. Toselli A, Rossi de Toselli JN, Saavedra J (1987) Petrological and geochemical considerations about the Lower Paleozoic Granitoids of the Pampean Ranges, Argentina. Revista Brasileira de Geociencias 17(4):619–622Google Scholar
  114. Toussaint J-F, Restrepo JJ (1989) Acreciones sucesivas en Colombia: un Nuevo modelo de evolución geológica. 5º Congreso Colombiano de Geología, Memorias 1:127–146Google Scholar
  115. Turner JCM, Méndez V (1975) Geología del sector oriental de los Departamentos de Santa Victoria e Iruya, Provincia de Salta, República Argentina. Boletín de la Academia Nacional de Ciencias de Córdoba 51(1–2):11–24Google Scholar
  116. Van der Lelij R (2013) Reconstructing north–western Gondwana with implications for the evolution of the Iapetus and Rheic Oceans: A geochronological, thermochronological and geochemical study. Ph.D. Thesis, University of Geneve, Sc. 4581, Geneve, 247 pGoogle Scholar
  117. Van der Lelij R, Spikings R, Ulianov A, Chiaradia M, Mora A (2016) Palaeozoic to Early Jurassic history of the northwestern corner of Gondwana, and implications for the evolution of the Iapetus, Rheic and Pacific Oceans. Gondwana Res 31:271–294CrossRefGoogle Scholar
  118. Verdecchia SO, Casquet C, Baldo EG, Pankhurst RJ, Rapela CW, Fanning M, Galindo C (2011) Docking of the Río de la Plata craton to southwestern Gondwana: age constraints from U-Pb SHRIMP detrital zircon ages from Sierras de Ambato and Velasco (Sierras Pampeanas, Argentina). J Geol Soc 168:1061–1071CrossRefGoogle Scholar
  119. Villagómez D, Spikings R, Magna T, Kammer A, Winkler W, Beltrán A (2011) Geochronology, geochemistry and tectonic evolution of the Western and Central cordilleras of Colombia. Lithos 125(3):875–896CrossRefGoogle Scholar
  120. Willner AP, Tassinari CCG, Rodrigues JF, Acosta J, Castroviejo R, Rivera M (2014) Contrasting Ordovician high- and low-pressure metamorphism related to a microcontinent-arc collision in the Eastern Cordillera of Perú (Tarma province). J S Am Earth Sci 54:71–81CrossRefGoogle Scholar
  121. Wörner G, Lezaun J, Beck A, Heber V, Lucassen F, Zinngrebe E, Rössling R, Wilcke HG (2000) Geochronology, petrology, and geochemistry of basement rocks from Belen (N. Chile) and C. Uyarani (W. Bolivian Altiplano): implication for the evolution of the basement. J S Am Earth Sci 13:717–737CrossRefGoogle Scholar
  122. Zappettini E, Blasco G, Villar L (1994) Geología del extremo sur del Salar de Pocitos, Provincia de Salta, República Argentina. 7° Congreso Geológico Chileno, Actas 1:220–224, Concepción.Google Scholar
  123. Zimmermann U, Bahlburg H, Mezger K, Kay SM (2014) Origin and age of ultramafic rocks and gabbros in the southern Puna of Argentina: an alleged Ordovician suture revisited. Int J Earth Sci 103:1023–1036CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Estudios Andinos “Don Pablo Groeber”, Departamento de Ciencias Geológicas, FCENUniversidad de Buenos Aires–CONICETBuenos AiresArgentina

Personalised recommendations