Paleogeographic and Kinematic Constraints in the Tectonic Evolution of the Pre-Andean Basement Blocks

  • Augusto E. RapaliniEmail author
  • Silvana E. Geuna
  • Pablo R. Franceschinis
  • Cecilia M. Spagnuolo
Part of the Springer Earth System Sciences book series (SPRINGEREARTH)


Formation of the south Central Andes basement cannot be unlinked from the final stages of Western Gondwana amalgamation. This process is still matter of much debate and continuous research. In the last two decades, a picture has emerged that suggests that the accretion and/or displacement of discrete crustal blocks in the Ediacaran and Early Paleozoic was a major process that finally configured the basement upon which three hundred million years later the Andean orogen developed. A main crustal fragment of the basement of central Argentina is the Pampia terrane. Recent, but still scarce, paleomagnetic results on Cambrian rocks from this terrane show anomalous pole positions whose interpretation is still ambiguous. Whether Pampia is a cortical fragment linked to the Amazonian craton that collided against the Rio de la Plata craton coetaneously with the closure of the hypothetical Clymene Ocean, whether it was attached previously and subsequently collided with a western crustal sliver (Western Pampia) associated with the Arequipa-Antofalla terrane, or whether it was a fragment detached from southern Kalahari that was displaced along the margin of the Río de la Plata craton in the Cambrian, cannot be unambiguously solved due to the scarcity of paleomagnetic data. It is generally accepted that the very long magmatic belt along the western boundary of Pampia in the Ordovician (the Famatinian arc) developed on stretched continental crust. Systematic large clockwise rotation of Ordovician magmatic and sedimentary rocks along this belt has been confirmed in recent years, but the originally para-autochthonous rotated terrane model has been replaced by one in which a systematic pattern of small crustal block rotations accompanied deformation due to collision of the allochthnous Cuyania terrane. The very large counterclockwise rotations in the Western Puna (Antofalla terrane) of Chile and Argentina are still interpreted by some authors as evidence of closure of a V-shaped back-arc basin between Antofalla (and Arequipa?) and the Western Gondwana margin in the Late Ordovician. However, the interpretation of such rotations as due to tectonic escape of the Antofalla block during Cuyania collision may be more compatible with geochemical signatures that suggest crustal links between the Sierras Pampeanas and the Puna basements. Paleomagnetic support for the Laurentian origin of the Cuyania terrane has endured the significant improvement of the apparent polar wander path for Gondwana in the Ediacaran–Cambrian. Alternative models suggesting a para-autochthonous origin of Cuyania are difficult to reconcile with different lines of evidence (biogeographic, isotopic) and are not supported by available paleomagnetic data for this terrane. Whether Chilenia is a truly allochtonous terrane or a fragment of Cuyania that rifted apart to collide back in the Devonian is still controversial. Unfortunately, paleomagnetic data are not available to test these models yet.


Paleomagnetic data Paleozoic Amalgamation Allochtonous Para-authochthonous 



The Universidad de Buenos Aires (UBACyT 20020130100465BA), the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina), and the Agencia Nacional de Investigaciones Científicas y Técnicas (ANPCyT) gave institutional support to these investigations. We thank the contribution of different colleagues who helped us understand better this complex and still enigmatic geological history. Among others, we would like to thank R. Astini, C. Cingolani, D. Poiré, M. Escayola, M. Lopez de Luchi, V. Ramos, C. Rapela, R. Trindade, and C. Vasquez. Constructive review by M.P. Iglesia Llanos is gratefully acknowledged.


  1. Aceñolaza FG, Toselli AJ (1981) Geología del noroeste argentino. Facultad de Ciencias Naturales, Universidad Nacional de Tucumán, Argentina, Publicación Especial, pp 212Google Scholar
  2. Aceñolaza FG, Miller H, Toselli AJ (2002) Proterozoic–early Paleozoic evolution in western South America: A discussion. Tectonophysics 354:121–137CrossRefGoogle Scholar
  3. Adams CJ, Miller H, Aceñolaza FG, Toselli AJ, Griffin WL (2011) The Pacific Gondwana margin in the late Neoproterozoic–early Paleozoic: Detrital zircon U–Pb ages from metasediments in northwest Argentina reveal their maximum age, provenance and tectonic setting. Gondwana Res 19:71–83CrossRefGoogle Scholar
  4. Adiyaman Ö, Chorowicz J, Arnaud ON, Gündogdu MN, Gourgaud A (2001) Late Cenozoic tectonics and volcanism along the North Anatolian Fault: New structural and geochemical data. Tectonophysics 338:135–165CrossRefGoogle Scholar
  5. Allmendinger RW, Ramos VA, Jordan TE, Palma M, Isacks BL (1983) Paleogeography and Andean structural geometry, NW Argentina. Tectonics 2:1–16CrossRefGoogle Scholar
  6. Álvarez J, Mpodozis C, Arriagada C, Astini R, Morata D, Salazar E, Valencia VA, Vervoort JD (2011) Detrital zircons from late Paleozoic accretionary complexes in north-central Chile (28°–32° S): Possible fingerprints of the Chilenia terrane. J South Am Earth Sci 32(4):460–476CrossRefGoogle Scholar
  7. Álvarez O, Gimenez M, Braitenberg C, Folguera A (2012) GOCE satellite derived gravity and gravity gradient corrected for topographic effect in the South Central Andes region. Geophys J Int 190(2):941–959CrossRefGoogle Scholar
  8. Astini RA (1998) Stratigraphic evidence supporting the rifting, drifting and collision of the Laurentian Precordillera terrane of western Argentina. In: Pankhurst RJ, Rapela CW (eds) The Proto-Andean margin of Gondwana. Geol Soc London, Special Publication 142:11–33Google Scholar
  9. Astini RA (2003) The Ordovician Proto-Andean basins. In: Benedetto JL (ed) Ordovician fossils of Argentina. Secretaría de Ciencias y Tecnología, Universidad Nacional de Córdoba, pp 1–74Google Scholar
  10. Astini RA, Benedetto JL, Vaccari NE (1995) The early Paleozoic evolution of the Argentine Precordillera as a Laurentian rifted, drifted and collided terrane: A geodynamic model. Geol Soc Am Bulletin 107:253–273CrossRefGoogle Scholar
  11. Bahlburg H, Hervé F (1997) Geodynamic evolution and tectonostratigraphic terranes of northwestern Argentina and northern Chile. Geol Soc Am Bulletin 109:869–881CrossRefGoogle Scholar
  12. Baldo E, Casquet C, Galindo C (1996) El metamorfismo de la Sierra Chica de Córdoba (Sierras Pampeanas), Argentina. Geogaceta 19:48–51Google Scholar
  13. Benedetto JL (1993) La hipótesis de la aloctonía de la Precordillera Argentina: un test estratigráfico y biogeográfico. In: XIIº Congreso Geológico Argentino, Actas 3, pp 375–384Google Scholar
  14. Benedetto JL (1998) Early Palaeozoic brachiopods and associated shelly faunas from western Gondwana: Their bearing on the geodynamic history of the pre-Andean margin. In: Pankhurst RJ, Rapela CW (eds) The Proto-Andean margin of Gondwana. Geol Soc London, Special Publication 142:57–83Google Scholar
  15. Benedetto JL (2004) The allochthony of the Argentine Precordillera ten years later (1993–2003): A new paleobiogeographic test of the microcontinental model. Gondwana Res 7(4):1027–1039CrossRefGoogle Scholar
  16. Benedetto JL, Sanchez TM, Carrera MG, Brussa ED, Salas MJ (1999) Paleontological constraints on succesive paleogeographic positions of Precordillera terrane during the early Paleozoic. In: Ramos VA, Keppie JD (eds) Laurentia–Gondwana connections before Pangea. Geol Soc Am, Special Paper 336:21–42Google Scholar
  17. Benedetto JL, Vaccari NE, Waisfeld BG, Sánchez TM, Foglia RD (2009) Cambrian and Ordovician biogeography of the South American margin of Gondwana and accreted terranes. Geol Soc London, Special Publications 325:201–232Google Scholar
  18. Blasco G, Villar L, Zappettini EO (1996) El complejo ofiolítico desmembrado de la Puna argentina. Provincias de Jujuy, Salta y Catamarca. In: XIIIº Congreso Geológico Argentino and IIIº Congreso de Exploración de Hidrocarburos, Actas 3, pp 653–667Google Scholar
  19. Bock B, Bahlburg H, Wörner G, Zimmermann U (2000) Tracing crustal evolution in the southern Central Andes from late Precambrian to Permian with geochemical and Nd and Pb isotope data. J Geology 108:515–535CrossRefGoogle Scholar
  20. Boedo FL, Vujovich GI, Kay SM, Ariza JP, Pérez Luján SB (2013) The E-MORB like geochemical features of the early Paleozoic mafic-ultramafic belt of the Cuyania terrane, western Argentina. J South Am Earth Sci 48:73–84CrossRefGoogle Scholar
  21. Cañas FL (1999) Facies and sequences of the late Cambrian–early Ordovician carbonates of the Argentine Precordillera: A stratigraphic comparison with Laurentian platforms. In: Ramos VA, Keppie JD (eds) Laurentia–Gondwana connections before Pangea. Geol Soc Am, Special Paper 336:43–62Google Scholar
  22. Chernicoff CJ, Zappettini EO (2003) Evidencias geofísicas para la delimitación de terrenos preGondwánicos en la región centro-austral argentina. In: Xº Congreso Geológico Chileno, Concepción, Actas CDGoogle Scholar
  23. Chernicoff CJ, Zappettini EO (2004) Geophysical evidence for terrane boundaries in south-central Argentina. Gondwana Res 7:1105–1116CrossRefGoogle Scholar
  24. Chernicoff CJ, Zappettini EO, Santos JO, Allchurch S, McNaughton NJ (2010) The southern segment of the Famatinian magmatic arc, La Pampa Province, Argentina. Gondwana Res 17:662–675CrossRefGoogle Scholar
  25. Cingolani CA, Santos JOS, McNaughton NJ, Hartmann LA (2005) Geocronología U–Pb SHRIMP sobre circones del Granitoide Montecristo. Tandil, Provincia de Buenos Aires, Argentina. In: XVIº Congreso Geológico Argentino, Actas 1, La Plata, pp 299–302Google Scholar
  26. Coira B, Davidson J, Mpodozis C, Ramos V (1982) Tectonic and magmatic evolution of the Andes of northern Argentina and Chile. Earth Sci Rev 18:303–332CrossRefGoogle Scholar
  27. Coira B, Perez B, Flores P, Mahlburgh Kay S, Woll B, Hanning M (1999) Magmatic sources and tectonic setting of Gondwana margin Ordovician magmas, northern Puna of Argentina and Chile. In: Keppie D, Ramos V (eds) Laurentia–Gondwana connections before Pangea. Geol Soc Am, Special Paper 336:143–170Google Scholar
  28. Coira B, Koukharsky M, Guevara SR, Cisterna CE (2009) Puna (Argentina) and northern Chile Ordovician basic magmatism: A contribution to the tectonic setting. J South Am Earth Sci 27:24–35CrossRefGoogle Scholar
  29. Collo G, Astini R, Cawood PA, Buchan C, Pimentel M (2009) U–Pb detrital zircón ages and Sm–Nd isotopic features in low grade metasedimentary rocks of the Famatina belt: Implications for the late Neoproterozoic–early evolution of the proto-Andean margin of Gondwana. J Geol Soc 166:303–319CrossRefGoogle Scholar
  30. Conti CM, Rapalini AE, Coira B, Koukharsky M (1996) Paleomagnetic evidence of an early Paleozoic rotated terrane in NW Argentina. A clue for Gondwana–Laurentia interaction? Geology 24:953–956Google Scholar
  31. Cordani UG, Sato K, Teixeira W, Tassinari CCG, Basei MAS (2000) Crustal evolution of the South American platform. In: Cordani UG, Milani EJ, Thomaz Filho A, Campos DA (eds) Tectonic evolution of South America, 31st International Geological Congress, Rio de Janeiro, Brazil, pp 19–40Google Scholar
  32. Cordani UG, Pimentel MM, Ganade de Araujo CE, Basei MAS, Fuck RA, Girardi VAV (2013) Was there an Ediacaran Clymene Ocean in central SouthAmerica? Am J Sci 313:517–539Google Scholar
  33. Dahlquist JA, Verdecchia SO, Baldo EG, Basei MAS, Alasino PH, Urán GA, Rapela CW, da Costa Campos Neto M, Zandomeni PS (2016) Early Cambrian U–Pb zircon age and Hf-isotope data from the Guasayán pluton, Sierras Pampeanas, Argentina: implications for the northwestern boundary of the Pampean arc. Andean Geol 43(1):137–150Google Scholar
  34. Dalla Salda L, Cingolani C, Varela R (1992) Early Paleozoic orogenic belt of the Andes in southwestern South America: Result of Laurentia–Gondwana collision? Geology 20:617–620Google Scholar
  35. Dalmayrac B, Lancelot JR, Leyreloup A (1977) Two billion year granulites in the late Precambrian metamorphic basement along the southern Peruvian coast. Science 198:49–51CrossRefGoogle Scholar
  36. Dalziel IWD (1997) Neoproterozoic–Paleozoic geography and tectonics: Review, hypothesis, environmental speculation. GSA Bull 109:16–42CrossRefGoogle Scholar
  37. Davis JS, Roeske SM, McClelland WC, Snee LW (1999) Closing the ocean between the Precordillera terrane and Chilenia: Early Devonian ophiolite emplacement and deformation in the southwest Precordillera. In: Ramos V, Keppie D (eds) Laurentia–Gondwana connections before Pangea. Geol Soc Am, Special Paper 336:115–138Google Scholar
  38. D’Eramo F, Tubía JM, Pinotti L, Vegas N, Coniglio J, Demartis M, Aranguren A, Basei M (2013) Granite emplacement by crustal boudinage: example of the Calmayo and El Hongo plutons (Córdoba, Argentina). Terra Nova 25:423–430Google Scholar
  39. Escayola MP, Pimentel MM, Armstrong R (2007) A Neoproterozoic Back-Arc Basin: SHRIMP U–Pb and Sm–Nd isotopic evidence from the Eastern Pampean Ranges, Argentina. Geology 35:495–498CrossRefGoogle Scholar
  40. Escayola MP, Ramé GA, Kraemer PE (1996) Caracterización y significado geotectónico de las fajas ultramáficas de Córdoba. In: XIIIº Congreso Geológico Argentino, Actas 3, Buenos Aires, pp 421–438Google Scholar
  41. Escayola MP, Van Staal CR, Davis WJ (2011) The age and tectonic setting of the Puncoviscana Formation in northwestern Argentina: An accretionary complex related to early Cambrian closure of the Puncoviscana Ocean and accretion of the Arequipa-Antofalla block. J South Am Earth Sci 32:438–459CrossRefGoogle Scholar
  42. Favetto A, Pomposiello C, de Luchi MGL, Booker J (2008) 2D Magnetotelluric interpretation of the crust electrical resistivity across the Pampean terrane–Río de la Plata suture, in central Argentina. Tectonophysics 459:54–65CrossRefGoogle Scholar
  43. Favetto A, Rocha V, Pomposiello C, García R, Barcelona H (2015) A new limit for the NW Río de la Plata Craton Border at about 24º S (Argentina) detected by Magnetotellurics. Geol Acta 13(3):243–254Google Scholar
  44. Finney SC (2007) The parautochthonous Gondwanan origin of the Cuyania (greater Precordillera) terrane of Argentina: A re-evaluation of evidence used to support an allochthonous Laurentian origin. Geol Acta 5(2):127–158Google Scholar
  45. Finney S, Gleason J, Gehrels G, Peralta S, Aceñolaza G (2002) Early Gondwanan connection for the Argentine Precordillera terrane. Earth Planet Sci Lett 76:1–11Google Scholar
  46. Finney S, Peralta S, Gehrels G, Marsaglia K (2005) The early Paleozoic history of the Cuyania (greater Precordillera) terrane of western Argentina: Evidence from geochronology of detrital zircons from Middle Cambrian sandstones. Geol Acta 3(4):339–354Google Scholar
  47. Forsythe R, Davidson J, Mpodozis C, Jesinkey C (1993) Lower Paleozoic relative motion of the Arequipa block and Gondwana: Paleomagnetic evidence from Sierra de Almeida of northern Chile. Tectonics 12:219–236CrossRefGoogle Scholar
  48. Franceschinis P, Rapalini A, Escayola M, Luppo T (2016) Paleomagnetic studies on the late Ediacaran–early Cambrian Puncoviscana and the late Cambrian Campanario formations, NW Argentina: New paleogeographic constraints for the Pampia terrane. J South Am Earth Sci 70:145–161CrossRefGoogle Scholar
  49. Gangui A, Götze HJ (1996) The deep structures of the Northern Argentina: constraints from 2D seismic data 3D gravity modelling. In: XIIIº Congreso Geológico Argentino, Actas 5, pp 545–565Google Scholar
  50. Garfunkel Z, Ron H (1985) Block rotation and deformation by strike-slip faults: 2. The properties of a type of macroscopic discontinuous deformation. J Geophysical Res Solid Earth 90:8589–8602CrossRefGoogle Scholar
  51. Geuna SE, Escosteguy LD, Miró R (2008) Paleomagnetism of the late Devonian–early Carboniferous Achala Batholith, Córdoba, central Argentina: Implications for the apparent polar wander path of Gondwana. Gondwana Res, Special Issue “The Western Gondwana Margin: Proterozoic to Mesozoic” 13:227–237Google Scholar
  52. Geuna SE, D’Eramo F, Pinotti L, Di Marco A, Mutti D, Escosteguy L (2010) Preliminary results of a paleomagnetic study on the Ordovician Calmayo granitoid, Sierras de Córdoba, Argentina. In: Tassone et al. (eds) Scientific contributions of the Geosur, International Geological Congress on the Southern Hemisphere, Bollettino di Geofisica Teorica ed Applicata 51:137–140Google Scholar
  53. Geuna SE, López de Luchi M, Escosteguy LD (2011) Caracterización paleomagnética y de magnetofábrica de las dos secuencias que componen el batolito de Achala, Devónico, Sierras Pampeanas (Argentina). In: IIº Biennial Meeting of Asociación Latinoamericana de Paleomagnetismo y Geomagnetismo, Tandil, Latinmag Letters 1, Special Issue B25:1–6Google Scholar
  54. Goetze HJ, Kirchner A (1997) Interpretation of gravity and geoid in the central Andes between 20° and 29° S. J South Am Earth Sci 10:179–188CrossRefGoogle Scholar
  55. González Bonorino F, González Bonorino G (1991) Precordillera de Cuyo y Cordillera Frontal en el Paleozoico temprano: terrenos bajo sospecha de ser autóctonos. Revista Geológica de Chile 18:97–107Google Scholar
  56. González Menéndez L, Gallastegui G, Cuesta A, Heredia N, Rubio-Ordóñez A (2013) Petrogenesis of Early Paleozoic basalts and gabbros in the western Cuyania terrane: Constraints on the tectonic setting of the southwestern Gondwana margin (Sierra del Tigre, Andean Argentine Precordillera). Gondwana Res 24(1):359–376CrossRefGoogle Scholar
  57. Grosse P, Bellos LI, de los Hoyos CR, Larrovere MA, Rossi J, Toselli AJ (2011) Across-arc variation of the Famatinian magmatic arc (NW Argentina) exemplified by I-, S- and transitional I/S-type early Ordovician granitoids of the Sierra de Velasco. J South Am Earth Sci 32(1):110–126Google Scholar
  58. Hauser N, Matteini M, Omarini R, Pimentel M (2011) Combined U–Pb and Lu–Hf isotope data on turbidites of the Paleozoic basement of NW Argentina and petrology of associated igneous rocks: Implications for the tectonic evolution of western Gondwana between 560 and 460 Ma. Gondwana Res 19:100–127CrossRefGoogle Scholar
  59. Hyppolito T, Juliani C, García-Casco A, Tieppo Meira V, Bustamante Hervé F (2014) The nature of the Palaeozoic oceanic basin at the southwestern margin of Gondwana and implications for the origin of the Chilenia terrane (Pichilemu region, central Chile). Int Geol Rev 56(9):1097–1121CrossRefGoogle Scholar
  60. Iannizzotto NF, Rapela CW, Baldo EG, Galindo C, Fanning CM, Pankhurst RJ (2013) The Sierra Norte-Ambargasta batholith: Late Ediacaran–early Cambrian magmatism associated with Pampean transpressional tectonics. J South Am Earth Sci 42:127–143CrossRefGoogle Scholar
  61. Introcaso A, Martínez MP, Giménez ME, Ruiz F (2004) Geophysical study of the Valle Fértil lineament between 28º45′S and 31º30′S: Boundary between the Cuyania and Pampia terranes. Gondwana Res 7:1117–1132CrossRefGoogle Scholar
  62. Jezek P, Wilner AP, Aceñolaza F, Miller H (1985) The Puncoviscana through—a large basin of Late Precambrian to Early Cambrian age on the Pacific edge of the the Brasilian shield. Geol Rundsch 74:573–584CrossRefGoogle Scholar
  63. Kay SM, Orrell S, Abruzzi JM (1996) Zircon and whole rock Nd–Pb isotopic evidence for a Grenville age and Laurentian origin for the basement of the Precordilleran terrane in Argentina. J Geol 104:637–648CrossRefGoogle Scholar
  64. Kay SM, Ramos VA, Kay R (1984) Elementos mayoritarios y trazas de las vulcanitas ordovícicas de la Precordillera Occidental: basaltos de rift oceánico temprano (?) próximos al márgen continental. In: IXº Congreso Geológico Argentino, Actas 2, S.C. Bariloche, pp 48–65Google Scholar
  65. Keller M, Buggisch W, Lehnert O (1998) The stratigraphical record of the Argentine Precordillera and its plate-tectonic background. In: Pankhurst RJ, Rapela CW (eds) The Proto-Andean margin of Gondwana. Geol Soc London, Special Publication 142:35–56Google Scholar
  66. Keppie JD, Bahlburg H (1999) Puncoviscana formation of northwestern and central Argentina: Passive margin or foreland basin deposit? In: Ramos V, Keppie D (eds) Laurentia–Gondwana connections before Pangea. Geol Soc Am, Special Paper 336:139–143Google Scholar
  67. Keppie JD, Ramos VA (1999) Odyssey of terranes in the Iapetus and Rheic oceans during the Paleozoic. In: Ramos V, Keppie D (eds) Laurentia–Gondwana connections before Pangea, Geol Soc Am, Special Paper 336:267–276Google Scholar
  68. Klein EV, Moura CAV, Pinheiro BLS (2005) Paleoproterozoic crustal evolution of the São Luís Craton, Brazil: Evidence from zircon Geochronology and Sm–Nd isotopes. Gondwana Res 8:177–186CrossRefGoogle Scholar
  69. Kraemer PE, Escayola MP, Martino RD (1995) Hipótesis sobre la evolución tectónica neoproterozoica de las Sierras Pampeanas de Córdoba (30°40′–32°40′). Rev Asoc Geo Arg 50:47–59Google Scholar
  70. Loewy SL, Connelly JN, Dalziel IWD (2004) An orphaned basement block: The Arequipa-Antofalla Basement of the central Andean margin of South America. Geol Soc Am Bull 116:171–187CrossRefGoogle Scholar
  71. Lopez VL, Gregori DA (2004) Provenance and evolution of the Guarguaraz Complex, Cordillera Frontal, Argentina. Gondwana Res 7:1197–1208CrossRefGoogle Scholar
  72. Lucassen F, Becchio R, Wilke H, Franz G, Thirlwall M, Viramonte J, Wemmer K (2000) Proterozoic–Paleozoic development of the Central Andes (18–26º S)—a mobile belt of the South American craton. J South Am Earth Sci 13:697–715CrossRefGoogle Scholar
  73. Lucassen F, Becchio R, Harmon R, Kasemann S, Franz G, Trumbull R, Wilke HG, Romer RL, Dulski P (2001) Composition and density model of the continental crust in an active continental margin—the Central Andes between 18° and 27° S. Tectonophysics 341:195–223CrossRefGoogle Scholar
  74. Mannheim R (1993) Génesis de las volcanitas eopaleozoicas del sistema de Famatina. In XIIº Congreso Geológico Argentino, Actas 4, Mendoza, pp 147–155Google Scholar
  75. Mantovani MSM, Brito Neves BB (2005) The Paranapanema Lithospheric Block: Its importance for Proterozoic (Rodinia, Gondwana) supercontinent theories. Gondwana Res 8(3):303–315CrossRefGoogle Scholar
  76. Martínez JC, Dristas JA, Massonne HJ (2012) Palaeozoic accretion of the microcontinent Chilenia, North Patagonian Andes: High-pressure metamorphism and subsequent thermal relaxation. Int Geol Rev 54(4):472–490CrossRefGoogle Scholar
  77. Martino R (2003) Las fajas de deformación dúctil de las Sierras Pampeanas de Córdoba: Una reseña general. Rev Asoc Geol Arg 58:549–571Google Scholar
  78. Martino R, Kraemer P, Escayola M, Giambastianai M, Arnosio M (1995) Transecta de las Sierras Pampeanas de Córodoba a los 32° S. Rev Asoc Geol Arg 50:60–77Google Scholar
  79. Miller H, Hockenreiner M, Sollner F (2003) Opening and closure of an island arc—back arc system in the early Paleozoic at the Gondwana margin: Famatinian system and Las Termas belt, NW Argentina. In: Xº Congreso Geológico Chileno, Actas CD, ConcepciónGoogle Scholar
  80. Miller H, Söllner F (2005) The Famatina complex (NW Argentina): Back-docking of an island arc or terrane accretion? Early Palaeozoic geodynamics at the western Gondwana margin. Geol Soc London, Special Publications 246:241–256Google Scholar
  81. Monger JW (1984) Cordilleran tectonics; a Canadian perspective. Bull Soc Geol Fr 7:255–278CrossRefGoogle Scholar
  82. Mosher S (1998) Tectonic evolution of the southern Laurentian Grenville orogenic belt. Geol Soc Am Bull 110:1357–1375CrossRefGoogle Scholar
  83. Omarini R, Götze HJ, Sureda RJ, Seilacher A, Pflüger F (1999) Puncoviscana folded belt in NW Argentina: Testimony of late Proterozoic Rodinia fragmentation and pre-Gondwana collisonal episodes. Geol Rundschau 88:76–97CrossRefGoogle Scholar
  84. Omarini RH, Sureda RJ, López de Azarevich VL, Hauser N (2008) El basamento Neoproterozoico- Cámbrico inferior en la provincia de Jujuy. In: Coira B, Zappettini E (eds) Relatorio del Congreso Geológico Argentino. Geología y Recursos Naturales de la provincia de Jujuy, No. 17, San Salvador de Jujuy, pp 17–28Google Scholar
  85. Orozco LA, Favetto A, Pomposiello C, Rossello E, Booker J (2013) Crustal deformation of the Andean foreland at 31°30′S (Argentina) constrained by magnetotelluric survey. Tectonophysics 582:126–139CrossRefGoogle Scholar
  86. Otamendi JE, Ducea MN, Tibaldi AM, Bergantz GW, Jesús D, Vujovich GI (2009) Generation of tonalitic and dioritic magmas by coupled partial melting of gabbroic and metasedimentary rocks within the deep crust of the Famatinian magmatic arc, Argentina. J Petrology 0:1–33Google Scholar
  87. Palma MA, Párica PD, Ramos VA (1986) El granito Archibarca: su edad y significado tectónico, provincia de Catamarca. Rev Asoc Geol Arg 41:414–419Google Scholar
  88. Pankhurst RJ, Rapela CW, Saavedra J, Baldo E, Dahlquist J, Pascua I, Fanning CM (1998) The Famatinian magmatic arc in the central Sierras Pampeanas: an early to mid-Ordovician continental arc on the Gondwana margin. In: Pankhurst RJ, Rapela CW (eds) The Proto-Andean margin of Gondwana. Geol Soc London, Special Publication 142:343–367Google Scholar
  89. Pankhurst RJ, Rapela CW, Fanning CM, Márquez M (2006) Gondwanide continental collision and the origin of Patagonia. Earth Sci Rev 76:235–257CrossRefGoogle Scholar
  90. Peri VG, Pomposiello MC, Favetto A, Barcelona H, Rossello EA (2013) Magnetotelluric evidence of the tectonic boundary between the Río de La Plata Craton and the Pampean terrane (Chaco-Pampean Plain, Argentina): The extension of the Transbrasiliano Lineament. Tectonophysics 608:685–699CrossRefGoogle Scholar
  91. Peri VG, Barcelona H, Pomposiello MC, Favetto A (2015) Magnetotelluric characterization through the Ambargasta-Sumampa Range: The connection between the northern and southern trace of the Río de La Plata Craton–Pampean Terrane tectonic boundary. J South Am Earth Sci 59:1–12CrossRefGoogle Scholar
  92. Ramé GA, Miró RC (2011) Modelo geofísico de contacto entre el orógeno Pampeano y el cratón del Río de la Plata en las provincias de Córdoba y Santiago del Estero. Serie Correlación Geológica 27(2):111–123Google Scholar
  93. Ramos V (1986) El diastrofismo Oclóyico: un ejemplo de tectónica de colisión durante el Eopaleozoico en el Noroeste Argentino. Revista del Instituto Geológico y Minero, Jujuy, 6: 13–28Google Scholar
  94. Ramos VA (1988) Late Proterozoic–early Paleozoic of South America—a collisional history. Episodes 11(3):168–174Google Scholar
  95. Ramos VA (2000) The Southern Central Andes. In: Cordani UG, Milani EJ, Thomaz Filho A, Campos DA (eds) Tectonic evolution of South America, 31st International Geological Congress, Rio de Janeiro, Brazil, pp 561–604Google Scholar
  96. Ramos VA (2004) Cuyania, an exotic block to Gondwana: Review of a historical success and the present problems. Gondwana Res 7:1009–1026CrossRefGoogle Scholar
  97. Ramos VA (2008) The basement of the central Andes: the Arequipa and related terranes. Annu Rev Earth Planet Sci 36:289–324CrossRefGoogle Scholar
  98. Ramos VA, Basei M (1997) The basement of Chilenia: An exotic continental terrane to Gondwana during the early Paleozoic. In: Symposium on Terrane Dynamics, New Zeland, pp 140–143Google Scholar
  99. Ramos VA, Dallmeyer RD, Vujovich GI (1998) Time constraints on the early Paleozoic docking of the Precordillera, central Argentina. In: Pankhurst RJ, Rapela CW (eds) The Proto-Andean margin of Gondwana. Geol Soc London, Special Publication 142:143–158Google Scholar
  100. Ramos VA, Escayola M, Mutti DI, Vujovich GI (2000) Proterozoic–early Paleozoic ophiolites of the Andean basement of southern South America. In: Dilek Y, Moores EM, Elthon D, Nicolas A (eds) Ophiolites and Oceanic Crust: New insights from field studies and Ocean Drilling program. Geol Soc Am, Special Paper 349:331–349Google Scholar
  101. Ramos VA, Jordan TE, Allmendinger RW, Mpodozis C, Kay SM, Cortés JM, Palma M (1986) Paleozoic terranes of the Central Argentine–Chilean Andes. Tectonics 5(6):855–880CrossRefGoogle Scholar
  102. Ramos VA, Vujovich G, Martino R, Otamendi J (2010) Pampia: A large cratonic block missing in the Rodinia supercontinent. J Geodyn 50:243–255CrossRefGoogle Scholar
  103. Rapalini AE (2005) The accretionary history of southern South America from the latest Proterozoic to the late Paleozoic: Some paleomagnetic constraints. In: Vaughan APM, Leat PT, Pankhurst RJ (eds) Terrane processes at the margins of Gondwana. Geol Soc London, Special Publication 246:305–328Google Scholar
  104. Rapalini AE (2012) Paleomagnetic evidence for the origin of the Argentine Precordillera, fifteen years later: What is new, what has changed, what is still valid? Latinmag Letters 2(1):1–20.
  105. Rapalini AE, Astini RA (1998) Paleomagnetic confirmation of the Laurentian origin of the Argentine Precordillera. Earth Planet Sci Lett 155:1–14CrossRefGoogle Scholar
  106. Rapalini AE, Cingolani CA (2004) First late Ordovician paleomagnetic pole for the Cuyania (Precordillera) terrane of western Argentina: A microcontinent or a Laurentian plateau? Gondwana Res 7(4):1089–1104Google Scholar
  107. Rapalini AE, Astini RA, Conti CM (1999) Paleomagnetic constraints on the tectonic evolution of Paleozoic suspect terranes from southern South America. In: Ramos V, Keppie D (eds) Laurentia–Gondwana connections before Pangea. Geol Soc Am, Special Paper 336:171–182Google Scholar
  108. Rapalini A, Pinotti L, D’Eramo F, Otamendi J, Vegas N, Tubía J, Singer S, Vujovich G (2010) A case of paleohorizontal restoration of plutonic bodies using paleomagnetic data: The Sierra de Valle Fértil, Magmatic Complex, Western Argentina. Bollettino di Geofísica Teorica ed Applicata, Italia, Sp Vol Geo Sur 51:156–159Google Scholar
  109. Rapalini AE, Tohver E, Sanchez Bettucci L, Lossada AC, Barcelona H, Perez C (2015) The late Neoproterozoic Sierra de las Animas Magmatic Complex and Playa Hermosa Formation, southern Uruguay, revisited: paleogeographic implications of new paleomagnetic and precise geochronologic data. Precambrian Res 259:143–155CrossRefGoogle Scholar
  110. Rapalini AE, Velasco MS, Koukharsky M (2002) New paleomagnetic data from the Western Puna of Argentina: Some tectonic speculations on its Early Paleozoic evolution. In: 5th International Symposium on Andean Geodynamics, Extended Abstract, Toulouse, France, pp 505–508Google Scholar
  111. Rapela CW, Pankhurst RJ, Casquet C, Baldo E, Saavedra J, Galindo C, Fanning CM (1998a) The Pampean orogeny of the southern proto-Andes: Cambrian continental collision in the Sierras de Córdoba. In: Pankhurst RJ, Rapela CW (eds) The Proto-Andean margin of Gondwana. Geol Soc London, Special Publication 142:181–217Google Scholar
  112. Rapela CW, Pankhurst RJ, Casquet C, Baldo E, Saavedra J, Galindo C (1998b) Early evolution of the Proto-andean margin of South America. Geology 26:707–710CrossRefGoogle Scholar
  113. Rapela CW, Pankhurst R, Casquet C, Fanning C, Baldo E, González Casado J, Galindo C, Dahlquist J (2007) The Rio de la Plata Craton and the assembly of SW Gondwana. Earth Sci Rev 83:49–82CrossRefGoogle Scholar
  114. Rapela CW, Verdecchia SO, Casquet C, Pankhurst RJ, Baldo EG, Galindo C, Murra JA, Dahlquist JA, Fanning CM (2016) Identifying Laurentian and SW Gondwana sources in the neoproterozoic to early Paleozoic metasedimentary rocks of the Sierras Pampeanas: paleogeographic and tectonic implications. Gondwana Res 32:193–212CrossRefGoogle Scholar
  115. Saavedra J, Toselli A, Rossi J, Pellitero E, Durand F (1998) The early Paleozoic magmatic record of the Famatina System: A review. In: Pankhurst RJ, Rapela CW (eds) The Proto-Andean Margin of Gondwana. Geol Soc London, Special Publication 142:283–295Google Scholar
  116. Sato AM, Tickyj H, Llambías ES, Sato K (2000) The Las Matras tonalitic-trondjhemitic pluton, central Argentina: Grenvillian-age constraints, geochemical characteristics and regional implications. J South Am Earth Sci 13:587–610CrossRefGoogle Scholar
  117. Schwartz JJ, Gromet LP (2004) Provenance of a late Proterozoic–early Cambrian basin, Sierras de Córdoba, Argentina. Precambrian Res 219:1–21CrossRefGoogle Scholar
  118. Shackleton RM, Ries AC, Coward MP, Cobbold PR (1979) Structure, metamorphism and geochronology of the Arequipa Massif of coastal Perú. Geological Society, Memoir 12, London, pp 1–21Google Scholar
  119. Sigismondi ME, Fantín FE (2014) Estructura cortical y características geodinámicas. In: Martino RD, Guereschi AB (eds) Geología y recursos naturales de la provincia de Córdoba. Relatorio del XIXº Congreso Geológico Argentino, pp 939–961Google Scholar
  120. Slagstad T, Culshaw NG, Daly JS, Jamieson RA (2009) Western Grenville Province holds key to midcontinental Granite Rhyolite Province enigma. Terra Nova 21(3):181–187CrossRefGoogle Scholar
  121. Spagnuolo CM, Rapalini AE, Astini RA (2008a) Paleogeographic and tectonic implications of the first paleomagnetic results from the middle–late Cambrian Meson Group: NW Argentina. J South Am Earth Sci 25:86–99CrossRefGoogle Scholar
  122. Spagnuolo C, Rapalini AE, Astini RA (2008b) Palaeomagnetic confirmation of Palaeozoic clockwise rotation of the Famatina Ranges (NW Argentina): Implications for the evolution of the SW margin of Gondwana. Geophys J Int 173(1):63–78CrossRefGoogle Scholar
  123. Spagnuolo C, Rapalini AE, Astini RA (2011) Reinterpretation of the Ordovician rotations found in NW Argentina and Northern Chile: A consequence of the Precordillera collision? Inter J Earth Sci 100:603–618Google Scholar
  124. Spagnuolo CM, Rapalini AE, Astini RA (2012) Assembly of Pampia to the SW Gondwana margin: A case of strike-slip docking? Gondwana Res 21:406–421Google Scholar
  125. Thomas W, Astini RA (1996) The Argentine Precordillera: A traveler from the Ouachita embayment of North American Laurentia. Science 273:752–757CrossRefGoogle Scholar
  126. Tohver E, Cawood PA, Rossello EA, Jourdan F (2012) Closure of the Clymene Ocean and formation of West Gondwana in the Cambrian: Evidence from the Sierras Australes of the southernmost Rio de la Plata craton, Argentina. Gondwana Res 21:394–405CrossRefGoogle Scholar
  127. Tohver E, Trindade RIF, Solum JG, Hall CM, Riccomini C, Nogueira AC (2010) Closing the Clymene ocean and bending a Brasiliano belt: Evidence for the Cambrian formation of Gondwana, southeast Amazon craton. Geology 38:267–270CrossRefGoogle Scholar
  128. Tohver E, Trindade RI (2014) Comment on “Was there an Ediacaran Clymene Ocean in central South America?” By UG Cordani and others. Am J Sci 314:805–813CrossRefGoogle Scholar
  129. Tomezzoli RN (2012) Chilenia y Patagonia: ¿un mismo continente a la deriva? Rev Asoc Geol Arg 69:222–239Google Scholar
  130. Toselli A, Durand F, Rossi de Toselli, Saavedra J (1996) Esquema de la evolución geotectónica y magmática del sistema eopaleozoico de Famatina y sectores de Sierras Pampeanas. In: XIIIº Congreso Geológico Argentino, Actas 5, Buenos Aires, pp 443–462Google Scholar
  131. Trindade RIF, D’Agrella-Filho MS, Epof I, Brito Neves BB (2006) Paleomagnetism of early Cambrian Itabaiana mafic dikes (NE Brazil) and the final assembly of Gondwana. Earth Planet Sci Lett 244:361–377CrossRefGoogle Scholar
  132. Vaccari NE, Waisfeld BG (2008) The Proto-Andean margin of Gondwana and accreted terranes: Contrasting biogeographics signatures based on late Cambrian–early Ordovician trilobites. Advances in trilobite research. Cuadernos del Museo Geominero 9:403–409Google Scholar
  133. Villar L (1975) Las fajas y otras manifestaciones ultrabásicas en la República Argentina y su significado metalogénetico. In: IIº Congreso IberoAmericano de Geología Económica, Actas 3, Buenos Aires, pp 135–155Google Scholar
  134. Viramonte JM, Becchio RA, Viramonte JG, Pimentel MM, Martino RD (2007) Ordovician igneous and metamorphic units in southeastern Puna: New U–Pb and Sm–Nd data and implications for the evolution of northwestern Argentina. J South Am Earth Sci 24:167–183CrossRefGoogle Scholar
  135. Von Gosen W, Prozzi C (2010) Pampean deformation in the Sierra Norte de Córdoba, Argentina: Implications for the collisional history at the western pre-Andean Gondwana margin. Tectonics 29Google Scholar
  136. Von Gosen W, McClelland WC, Loske W, Martínez JC, Prozzi C (2014) Geochronology of igneous rocks in the Sierra Norte de Córdoba (Argentina): Implications for the Pampean evolution at the western Gondwana margin. Lithosphere 6:277–300CrossRefGoogle Scholar
  137. Whitmeyer SJ, Simpson C (2003) High strain-rate deformation fabrics characterize a kilometers-thick Paleozoic fault zone in the Eastern Sierras Pampeanas, central Argentina. J Struct Geol 25:909–922CrossRefGoogle Scholar
  138. Willner AP, Gerdes A, Massonne HJ, Schmidt A, Sudo M, Thomson SN, Vujovich G (2011) The geodynamics of collision of a microplate (Chilenia) in Devonian times deduced by the pressure–temperature–time evolution within part of a collisional belt (Guarguaraz Complex, W-Argentina). Contrib Miner Petrol 162(2):303–327CrossRefGoogle Scholar
  139. Zimmermann U, Bahlburg H (1999) The evolution of the Ordovician southern Puna retro-arc basin (NW Argentina): Provenance analysis and paleotectonic setting. In: 4th International Sypsium of Andean Geodynamics, Abstracts, Göettingen, Germany, pp 830–831Google Scholar
  140. Zimmermann U, Bahlburg H, Mezger K, Berndt J, Kay SM (2014) Origin and age of ultramafic rocks and gabbros in the southern Puna of Argentina: an alleged Ordovician suture revisited. Inter J Earth Sci 103(4):1023–1036CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Augusto E. Rapalini
    • 1
    Email author
  • Silvana E. Geuna
    • 1
  • Pablo R. Franceschinis
    • 1
  • Cecilia M. Spagnuolo
    • 2
  1. 1.IGEBA-CONICETUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.CONICETUniversidad Nacional de TucumánSan Miguel de TucumánArgentina

Personalised recommendations