The Late Paleogene to Neogene Volcanic Arc in the Southern Central Andes (28°–37° S)

  • Vanesa D. LitvakEmail author
  • Stella Poma
  • Rosemary E. Jones
  • Lucía Fernández Paz
  • Sofía B. Iannelli
  • Mauro Spagnuolo
  • Linda A. Kirstein
  • Andrés Folguera
  • Victor A. Ramos
Part of the Springer Earth System Sciences book series (SPRINGEREARTH)


Evolution of arc magmatism along the Southern Central Andes (~28°–37° S) is strongly controlled by changes in the geometry of the downgoing slab (e.g., slab dip angle). This is particularly evident in the present-day Chilean-Pampean flat-slab and the late Miocene Payenia shallow subduction segments. Typical Andean-type volcanism was established from the late Oligocene to late Miocene in the high Andes (29°30″–30°30″S), with arc-related calc-alkaline volcanism having geochemical signatures that reflect changes in the residual mineral assemblages related to increased crustal thickness (>50 km). The increase in crustal thickness resulted from increased compression along the Southern Central Andean margin due to the subduction of the Juan Fernández Ridge, and consequent shallowing of the downgoing slab during Mid to Late Miocene. Associated with the decrease in the slab dip angle, the volcanic front migrated to the east. Further south, magmas developed across the present-day Payenia back-arc region (35°–37° S) show an increase in slab-derived components in the middle Miocene to early Pliocene times, which also suggests a progressive shallowing of the subducting slab at these latitudes. However, trace element ratios indicate a low-to-intermediate pressure residual mineral assemblage and no significant increase in crustal thickness is apparent, unlike further north in the Chilean-Pampean flat-slab segment. Although flat-slab geometry still prevails in this latter segment, re-steepening of the slab during early Pliocene times (~5–3 Ma) promoted an increase of arc and back-arc magmatism at these more southerly latitudes of the Southern Central Andes. A dynamic link between slab geometry, geochemistry, and volcanic activity is therefore observed in the Southern Central Andes.


Payenia shallow subduction Pampean flat-slab Crustal thickness Geochemistry Arc magmatism 



This work has been funded by grants from CONICET (grant 11220150100426CO) and University of Buenos Aires (grant UBACYT 20020150100166BA and 20020130100628BA). R. Jones was funded by a NERC CASE studentship awarded by the University of Edinburgh (NE/G524128/1), EIMF grants (IMF425/1010 and IMF450/1011), and the Derek and Maureen Moss Scholarship. L. Kirstein acknowledges the support from the Carnegie Trust for the Universities of Scotland. We thank Drs. S. Kay and P. Leal for fruitful discussion on the subject.


  1. Allmendinger R, Figueroa D, Snyder D, Beer J, Mpodozis C, Isacks B (1990) Foreland shortening and crustal balancing in the Andes at 30° S latitude. Tectonics 9:789–809Google Scholar
  2. Alonso S, Limarino CO, Litvak V, Poma S, Suriano J, Remesal M (2011) Paleogeographic, magmatic and paleoenviromental scenarios at 30° SL during the Andean Orogeny: cross sections form the volcanic-arc to the orogenic front (San Juan province, Argentina). In: Salfity JA, Marquillas RA (eds) Cenozoic Geology of the Central Andes of Argentine. SGS Publisher, pp 23–45Google Scholar
  3. Baldauf P (1997) Timing of the uplift of the Cordillera Principal, Mendoza Province, Argentina. MS thesis, George Washington University, p 356Google Scholar
  4. Barckhausen U, Ranero CR, Cande SC, Engels M, Weinrebe W (2008) Birth of an intraoceanic spreading center. Geology 36(10):767–770CrossRefGoogle Scholar
  5. Bermúdez A (1991) Sierra del Nevado. El límite oriental del arco volcánico del Neógeno entre los 35°30′ y 36° L.S. Argentina. In: VI Congreso Geológico Chileno, Actas 1, Santiago de Chile, pp 318–322Google Scholar
  6. Bermúdez A, Delpino D, Frey F, Saal A (1993) Los basaltos de retro-arcoextraandinos. In: Ramos VA (ed) Geología y Recursos Naturales de Mendoza. Asociación Geológica Argentina, Buenos Aires, pp 161–172Google Scholar
  7. Bertotto GW, Cingolani CA, Bjerg EA (2009) Geochemical variations in Cenozoic back-arc basalts at the border of La Pampa and Mendoza provinces, Argentina. J South Am Earth Sci 28:360–373CrossRefGoogle Scholar
  8. Bissig B, Clark AH, Rainbow A, Montgomery A (2015) Physiographic and tectonic settings of high-sulfidation epithermalgold–silver deposits of the Andes and their controls onmineralizing processes. Ore Geol Rev 65:327–364CrossRefGoogle Scholar
  9. Bissig T, Clark AH, Lee JKW, Heather KB (2001) The Cenozoic history of volcanism and hydrothermal alteration in the Central Andean flat-slab region: new 40Ar–39Ar constrains from the El Indio-Pascua Au(–Ag, Cu) belt, 29°20–30°30″S. Int Geol Rev 43:312–340CrossRefGoogle Scholar
  10. Bissig T, Clark AH, Lee JKW, von Quadt A (2003) Petrogenetic and metallogenetic responses to Miocene slab flattenig: new constrains from the El Indio-Pascua Au–Ag–Cu Belt, Chile/Argentina. Miner. Deposita 38(7):844–862CrossRefGoogle Scholar
  11. Burns WM, Jordan T, Copeland P, Kelley S (2006) Extensional tectonics in the Oligo-Miocene Southern Andes as recorded in the Cura-Mallín basin. In: Kay SM, Ramos VA (eds) Evolution of an Andean margin: a tectonic and magmatic view from the Andes to the Neuqén basin (35–39º S). Geological Society of America, Special paper 407, pp 163–184Google Scholar
  12. Cardó R, Díaz IN (1999) Hoja Geológica 3169-I, Rodeo, Provincias de San Juan. Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino, Buenos AiresGoogle Scholar
  13. Cardó R, Díaz IN, Limarino CO, Litvak VD, Poma S, Santamaria G (2007) Hoja Geológica 2969-III, Malimán, provincias de San Juan y La Rioja, Boletín, 320th edn. Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino, Buenos AiresGoogle Scholar
  14. Charrier R, Baeza O, Elgueta S, Flynn JJ, Gans P, Kay SM, Muñoz N, Wyss AR, Zurita E (2002) Evidence for Cenozoic extensional basin development and tectonic inversion south of the flat-slab segment, southern Central Andes, Chile (33°–36° S.L.). J South Am Earth Sci 15:117–139CrossRefGoogle Scholar
  15. Charrier R, Pinto L, Rodríguez MP (2007) Tectonostratigraphic evolution of the Andean Orogen in Chile. In: Moreno T, Gibbons W (eds) The Geology of Chile. Geological Society of London, Special Publications, pp 21–116Google Scholar
  16. Chulick GS, Detweiler S, Mooney WD (2013) Seismic structure of the crust and uppermost mantle of South America and surrounding oceanic basins. J South Am Earth Sci 42:260–276CrossRefGoogle Scholar
  17. Cobbold PR, Rosello EA (2003) Aptian to recent compressional deformation, foothills of the Neuquén Basin Argentina. Mar Petrol Geol 20:429–443CrossRefGoogle Scholar
  18. Delpino DH, Bermúdez A (1985) Volcán Plateado. Vulcanismo andesítico de retro-arco en el sector extrandino de la Provincia de Mendoza, 35°42′ Lat. Sur. Argentina. In: IV Congreso Geológico Chileno, Actas 3, Antofagasta, 108–119Google Scholar
  19. Dhuime B, Hawkesworth C, Cawood P (2011) When continents formed. Science 331:154–155CrossRefGoogle Scholar
  20. Drummond MS, Defant MJ (1990) A model for trondjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparisons. J Geophys Res 95:21503–21521CrossRefGoogle Scholar
  21. Dyhr CT, Holm PM, Llambías EJ (2013a) Geochemical constraints on the relationship between the Miocene-Pliocene volcanism and tectonics in the Palaoco and Fortunoso volcanic fields, Mendoza Region, Argentina: new insights from 40Ar/39Ar dating, Sr–Nd–Pb isotopes and trace elements. J Volcanol Geoth Res 266:50–68CrossRefGoogle Scholar
  22. Dyhr CT, Holm PM, Llambías EJ, Scherstén A (2013b) Subduction controls on Miocene back-arc lavas from Sierra de Huantraico and La Matancilla and new 40Ar/39Ar dating from the Mendoza Region, Argentina. Lithos 179:67–83CrossRefGoogle Scholar
  23. Folguera A, Naranjo JA, Orihashi Y, Sumino H, Nagzo K, Polanco E, Ramos VA (2009) Retro-arc volcanism in the northern San Rafael Block (34°–35°30′S), southern Central Andes: occurrence, age, and tectonic setting. J Volcanol Geoth Res 186:169–185 CrossRefGoogle Scholar
  24. Folguera A, Orts D, Spagnuolo M, Rojas Vera E, Litvak VD, Sagripanti L, Ramos M, Ramos VA (2011) A review of Late Cretaceous to Quaternary paleogeography of the Southern Andes. Biol J Linn Soc 103:250–268CrossRefGoogle Scholar
  25. Fromm R, Zandt G, Beck SL (2004) Crustal thickness beneath the Andes and Sierras Pampeanas at 30° S inferred from Pn apparent phase velocities. Geophys Res Lett 31:L06625CrossRefGoogle Scholar
  26. Gans CR, Beck SL, Zandt G, Gilbert H, Alvarado P, Anderson M, Linkimer L (2011) Continental and oceanic crustal structure of the Pampean flat slab region, western Argentina, using receiver function analysis: new high-resolution results. Geophys J Int 186:45–58CrossRefGoogle Scholar
  27. Giambiagi LB, Bechis F, García V, Clark A (2005) Temporal and spatial relationship between thick- and thin-skinned deformation in the thrust front of the Malargüe fold and thrust belt, Southern Central Andes. In: VI International Symposium on Andean Geodynamics, Extended Abstracts, Niza, pp 315–318Google Scholar
  28. Giambiagi L, Bechis F, García V, Clark A (2008) Temporal and spatial relationship between thick- and thin-skinned deformation in the Malargüe fold and thrust belt, Southern Central Andes. Tectonophysics 459:123–139CrossRefGoogle Scholar
  29. Gilbert H, Beck S, Zandt G (2006) Lithospheric and upper mantle structure of central Chile and Argentina. Geophys J Int 165:383–398CrossRefGoogle Scholar
  30. Goss AR, Kay SM, Mpodozis C (2013) Andean adakite-like high-Mg andesites on the northern margin of the Chilean-Pampean flat-slab (27–28.5° S) associated with frontal arc migration and fore-arc subduction erosion. J Petrol 54:2193–2234CrossRefGoogle Scholar
  31. Gregory-Wodzicki KM (2000) Uplift history of the Central and Northern Andes: a review. Geol Soc Am Bulletin 112:1091–1105CrossRefGoogle Scholar
  32. Groeber P (1946) Observaciones geológicas a lo largo del meridiano 70, I. Hoja Chos Malal. Revista Sociedad Geológica Argentina 1:177–208Google Scholar
  33. Gudnason J, Holm PM, Søager N, Llambías EJ (2012) Geochronology of the late Pliocene to recent volcanic activity in the Payenia back-arc volcanic province, Mendoza Argentina. J South Am Earth Sci 37:191–201CrossRefGoogle Scholar
  34. Hernando IR, Aragón E, Frei R, González PD, Spakman W (2014) Constrains on the origin and evolution of the magmas in the PayúnMatrú Volcanic Field, Quaternary Andean Back-arc of Western Argentina. J Petrol 55(1):209–239CrossRefGoogle Scholar
  35. Jones RE, Hoog JC, Kirstein LA, Kasemann SA, Hinton R, Elliott T, Litvak VD, EIMF (2014) Temporal variations in the influence of the subducting slab on Central Andean arc magmas: evidence from boron isotope systematics. Earth Planet Sc Lett 408:390–401CrossRefGoogle Scholar
  36. Jones RE, Kirstein LA, Kasemann SA, Dhuime BR, Elliott T, Litvak VD, Alsonso R, EIMF (2015) Geodynamic controls on the contamination of Cenozoic arc magmas in the southern Central Andes: insigths from the O and Hf isotopic composition of zircon. Geochim Cosmochim Ac 164:386–402CrossRefGoogle Scholar
  37. Jones RE, Kirstein LA, Kasemann SA, Litvak VD, Poma S, Elliott T, Alonso R, Hinton R, EIMF (2016) The role of changing geodynamics in the progressive contamination of Late Cretaceous to Late Miocene arc magmas in the southern Central Andes. Lithos 262:169–191CrossRefGoogle Scholar
  38. Jordan TE, Isacks BL, Allmendinger RW, Brewer JA, Ramos VA, Ando CJ (1983) Andean tectonics related to geometry of subducted Nazca plate. Geol Soc Am Bull 94:341–361CrossRefGoogle Scholar
  39. Jordan TE, Burns WM, Veiga R, Pangaro F, Copeland P, Mpodozis C (2001) Mid-Cenozoic intra-arc basins in the southern Andes. Tectonics 20.
  40. Kay SM, Abbruzzi JM (1996) Magmatic evidence for Neogene lithospheric evolution of the Central Andes “flat slab” between 30° S and 32° S. Tectonophysics 259:15–28CrossRefGoogle Scholar
  41. Kay SM, Copeland P (2006) Early to middle Miocene back-arc magmas of the Neuquén Basin: Geochemical consequences of slab shallowing and the westward drift of South America. In: Kay SM, Ramos VA (eds) Late Cretaceous to Recent magmatism and tectonism of the Southern Andean margin at the latitude of the Neuquen basin (36–39º S). Geological Society of America, Special Paper 407, pp 185–214Google Scholar
  42. Kay SM, Gordillo CE (1994) Pocho volcanic rocks and the melting of depleted continental lithosphere above a shallowly dipping subduction zone in the central Andes. Contrib Mineral Petr 117:25–44CrossRefGoogle Scholar
  43. Kay SM, Mpodozis C (2002) Magmatism as a probe to Neogene shallowing of the Nazca plate beneath the modern Chilean flat-slab. J South Am Earth Sci 15(1):39–57CrossRefGoogle Scholar
  44. Kay SM, Maksaev VA, Moscoso R, Mpodozis C, Nasi C (1987) Probing the evolving Andean lithosphere: mid-late Tertiary Magmatism in Chile (29°-30°30′S) over the modern zone of subhorizontal subduction. J Geophys Res 92:6173–6189CrossRefGoogle Scholar
  45. Kay SM, Maksaev VA, Moscoso R, Mpodozis C, Nasi C, Gordillo CE (1988) Tertiary Andean Magmatism in Chile and Argentina between 28° S and 33° S: correlation of magmatic chemistry with changing Benioff zone. J South Am Earth Sci 1:21–38CrossRefGoogle Scholar
  46. Kay SM, Mpodozis C, Ramos VR, Munizaga F (1991) Magma source variations for mid-late Tertiary magmatic rocks associated with shallowing zone and thickening crust in the central Andes (28° to 33° S). In: Harmon RS, Rapela CW (eds). Andean magmatism and its tectonic setting. Geological Society of America, Special Paper 265, pp 113–137Google Scholar
  47. Kay SM, Mpodozis C, Coira B (1999) Neogene magmatism, tectonism and mineral deposits of the Central Andes (22º–23º S Latitude). In: Skinner BJ (ed) Geology and Ore Deposits of the Central Andes. Soc of Economic Geol, Special Publication 7, pp 27–59Google Scholar
  48. Kay SM, Godoy E, Kurtz A (2005) Episodic arc migration, crustal thickening, subduction erosion and magmatism in the South-Central Andes. Geol Soc Am Bulletin 117:67–88CrossRefGoogle Scholar
  49. Kay SM, Mancilla O, Copeland P (2006a) Evolution of the Back-arc Chachahuén volcanic complex at 37° S latitude over a transient Miocene shallow subduction zone under the Neuquén Basin. In: Kay SM, Ramos VA (eds) Late Cretaceous to Recent magmatism and tectonism of the Southern Andean margin at the latitude of the Neuquen basin (36–39º S). Geological Society of America, Special Paper 407, pp 215–246Google Scholar
  50. Kay SM, Burns WM, Copeland P, Mancilla O (2006b) Upper Cretaceous to Holocene magmatism and evidence for transient Miocene shallowing of the Andean subduction zone under the northern Neuquén Basin. In: Kay SM, Ramos VA (eds) Late Cretaceous to Recent magmatism and tectonism of the Southern Andean margin at the latitude of the Neuquen basin (36–39º S). Geological Society of America, Special Paper 407, pp. 19–60Google Scholar
  51. Kurtz AC, Kay SM, Charrier R, Farrar E (1997) Geochronology of Miocene plutons and exhumation history of the El Teniente region, Central Chile (34–35° 8). Andean Geol 24:75–90Google Scholar
  52. Le Maitre RW, Bateman P, Dudek A, Keller J, Lameyre MJ, Le Bas PA, Sabine R, Schmid H, Sorensen A, Streckeisen AR, Wooley Zanettin B (1989) A classification of igneous rocks and glossary of terms, pp 193, Blackwell, OxfordGoogle Scholar
  53. Leveratto M (1976) Edad de intrusivos cenozoicos en la Precordillera de San Juan y su implicancia estratigráfica. Rev Asoc Geol Argent 31:53–58Google Scholar
  54. Limarino CO, Gutiérrez PR, Malizia D, Barreda V, Page S, Ostera H, Linares E (1999) Edad de las secuencias paleógenas y neógenas de las cordilleras de la Brea y Zancarrón, Valle del Cura. San Juan. Rev Asoc Geol Argent 54(2):177–181Google Scholar
  55. Litvak VD (2009) El volcanismo Oligoceno Superior—Mioceno Inferior del Grupo Doña Ana en la alta cordillera de San Juan. Rev Asoc Geol Argent 64(2):200–212Google Scholar
  56. Litvak VD, Page S (2002) Nueva evidencia cronológica en el Valle del Cura, provincia de San Juan. Rev Asoc Geol Argent 57(4):483–486Google Scholar
  57. Litvak VD, Poma S (2010) Geochemistry of mafic Paleocene volcanic rocks in Valle del Cura region: Implications for the petrogenesis of primary mantle-derived melts over the Pampean flat-slab. J South Am Earth Sci 29(3):705–716CrossRefGoogle Scholar
  58. Litvak VD, Poma S (2014) Petrogenesis of Miocene Volcanic arc rocks over the Chilean-Pampean flat-slab segment of the Central Andes constrained by mineral chemistry. Geologica Acta 12(2):151–171Google Scholar
  59. Litvak VD, Poma S, K SM (2007) Paleogene and Neogene magmatism in the Valle del Cura region: a new perspective on the evolution of the Pampean flat slab, San Juan province, Argentina. J South Am Earth Sci 24(2–4):117–137CrossRefGoogle Scholar
  60. Litvak VD, Spagnuolo MG, Folguera A, Poma S, Jones R, Ramos VA (2015) Late Cenozoic calc-alkaline volcanism over the Payenia shallow subduction zone, South-Central Andean back-arc (34°30-37′S), Argentina. J South Am Earth Sci 64:365–380CrossRefGoogle Scholar
  61. Llambias EJ, Sato AM (1990) El Batolito de Colangüil (29–31° S) cordillera frontal de Argentina: estructura y marco tectonico. Andean Geol 17:89–108Google Scholar
  62. Llambías EJ, Shaw S, Sato AM (1990). Lower Miocene plutons in the Eastern Cordillera Frontal of San Juan (29°75’S 69°30’W). In Congreso Geológico Argentino No. 11, Actas 1:83–86. San JuanGoogle Scholar
  63. Llambías EJ, Bertotto GW, Risso C, Hernando I (2010) El volcanismo cuaternario en el retro-arco de Payenia: una revisión. Rev Asoc Geol Argent 67(2):278–300Google Scholar
  64. Maksaev V, Moscoso R, Mpodozis C, Nasi C (1984) Las unidades volcánicas y plutónicas del Cenozoico superior entre la Alta Cordillera del Norte Chico (29°–31° S), Geología, alteración hidrotermal y mineralización. Rev Geol Chile 21(1):11–51Google Scholar
  65. Martin MW, Clavero RJ, Mpodozis MC, Cuitiño L (1995) Estudio Geológico de la Franja El Indio, Cordillera de Coquimbo. Servicio Nacional de Geologı́a y Minerı́a, Santiago. Informe registrado IR-95–6, 1, 1–238Google Scholar
  66. McGlashan N, Brown L, Kay S (2008) Crustal thickness in the central Andes from teleseismically recorded depth phase precursors. Geophys J Int 175:1013–1022CrossRefGoogle Scholar
  67. Muñoz J, Niemeyer RH (1984) Hoja Laguna del Maule, regiones del Maule y Biobio: Santiago, Chile. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, no. 64, scale 1:250,000, 98 pGoogle Scholar
  68. Muñoz Bravo J, Stern C, Bermúdez A, Delpino D, Dobbs MF, Frey FA (1989) El volcanismo plio-cuaternario a través de los 38° y 39° S de los Andes. Rev Asoc Geol Argent 44:270–286Google Scholar
  69. Muñoz M, Fuentes F, Vergara M, Aguirr L, OlovNyström J, Féraud G, Demant A (2006) Abanico East Formation: petrology and geochemistry of volcanic rocks behind the Cenozoic arc front in the Andean Cordillera, central Chile (33°50′S). Rev Geol Chile 331:109–140Google Scholar
  70. Nacif S, Triep E, Spagnotto S, Aragon E, Furlani R, Álvarez O (2015) The flat to normal subduction transition study to obtain the Nazca plate morphology using high resolution seismicity data fromthe Nazca plate in Central Chile. Tectonophysics 657:102–112CrossRefGoogle Scholar
  71. Nasi CP, Moscoso RD, Maksaev VJ (1990) Hoja Guanta, Región de Coquimbo. Carta Geológica de Chile N° 67. Santiago de Chile, Servicio de Geología y Minería, 140 pGoogle Scholar
  72. Niemeyer RH, Muñoz J (1983) Hoja Laguna de la Laja, Región del Bio Bio: Santiago, Chile. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, no. 57, scale 1:250,000, 52 pGoogle Scholar
  73. Nullo FE, Stephens G, Otamendi J, Baldauf P (2002) El volcanismo del Terciario superior del sur de Mendoza. Rev Asoc Geol Argent 57(2):119–132Google Scholar
  74. Nullo FE, Franchi M, González P, Herrero JC, Reinoso MS (1993) Mapa Geológico de la Provincia de Río Negro. Dirección Nacional del Servicio Geológico, Buenos AiresGoogle Scholar
  75. Nullo FE, Panza JL, Blasco G (1999) El Jurásico y Cretácico de la Cuenca Austral. In: Caminos R (ed) Geología Argentina. Servicio Geológico Minero Argentino, pp 528–535Google Scholar
  76. Ostera H, Linares E, Haller M (1999) Paramillos Altos intrusive belt, Southern Mendoza, Argentina. Ages, chemical and isotopic constraints. In: II South American Symposium on Isotope Geology, Actas 2, Córdoba, pp 256–260Google Scholar
  77. Otamendi J, Nullo F, Godeas M, Pezzutti N (1994) Petrogenesis del volcanismo terciario del Valle del Cura, San Juan, Argentina. In: VII Congreso Geológico Chileno, Actas 2, Concepción, pp 1130–1135Google Scholar
  78. Parada MA, Rivano S, Sepulveda P, Herve M, Herve F, Puig A, Munizaga F, Brook M, Pankhurst R, Snelling N (1988) Mesozoic and Cenozoic plutonic developmentin the Andes of central Chile (30°30′–32°30′S). J South Am Earth Sci 1:249–260CrossRefGoogle Scholar
  79. Pardo Casas F, Molnar P (1987) Relative motion of the Nazca (Farallón) and South America plates since Late Cretaceous time. Tectonics 6:233–248CrossRefGoogle Scholar
  80. Pilger RH (1981) Plate reconstructions, aseismic ridges, and low angle subduction beneath the Andes. Geol Soc Am Bulletin 92:448–456CrossRefGoogle Scholar
  81. Pilger RH (1984) Cenozoic plate kinematics, subduction and magmatism: South American Andes. J Geol Soc Lond 141:793–802CrossRefGoogle Scholar
  82. Pineda G, Emparan C (2006) Geología del área Vicuña-Pichasca, Región de Coquimbo. Carta Geológica de Chile, Serie Geología Básica. Servicio Nacional de Geología y Minería, SantiagoGoogle Scholar
  83. Poma S, Limarino C, Litvak V (2005) Formación Las Trancas: expresión del arcomagmático terciario en el faldeo occidental de la Precordilera de San Juan. In: XVI Congreso Geológico Argentino Actas 1, La Plata, pp 331–334Google Scholar
  84. Poma S, Ramos A, Litvak VD, Quenardelle S, Maisonnave B (2014). Tertiary volcanism from Iglesia Valley Basin, San Juan Province, Argentina. In: XIX Congreso Geológico Argentino, Actas CD, Córdoba, 2 pGoogle Scholar
  85. Quidelleur X, Carlut J, Tchilinguirian P, Germa A, Gillot PY (2009) Paleomagnetic directions from mid-latitude sites in the southern hemisphere (Argentina): contribution to time averaged field models. Phys Earth Planet Inter 172:199–209CrossRefGoogle Scholar
  86. Radic JP, Rojas L, Carpinelli A, Zurita E (2002) Evolución Tectónica de la cuenca Terciaria de Cura-Mallín Región Cordillerana Chileno Argentina (36°30′–39°00′S). In: XIV Congreso Geológico Argentino, Actas 3, Calafate, pp 233–237Google Scholar
  87. Ramos VA, Barbieri M (1989) El volcanismo cenozoico de Huantraico: edad y relaciones isotópicas iniciales, provincia del Neuquén. Rev Asoc Geol Argent 43:210–223Google Scholar
  88. Ramos VA, Folguera A (2005) Tectonic evolution of the Andes of Neuquén: Constraints derived from the magmatic arc and foreland deformation. In: Veiga G, Spalletti L, Howell J, Schwarz E (eds) The Neuquén Basin: a case study in sequence stratigraphy and basin dynamics. Geological Society of London, Special Publication 252, pp 15–35Google Scholar
  89. Ramos VA, Folguera A (2011) Payenia volcanic province in the Southern Andes: an appraisal of an exceptional Quaternary tectonic setting. J Volcanol Geoth Res 201:53–64CrossRefGoogle Scholar
  90. Ramos VA, Page R, Kay S, Lapido O, Delpino D (1987) Geología de la región del Volcán Tórtolas, Valle del Cura, provincia de San Juan. In: X° Congreso Geológico Argentino, Actas IV, Tucumán, pp 260–263Google Scholar
  91. Ramos VA, Kay SM, Page R, Munizaga F (1989) La Ignimbrita Vacas Heladas y el cese del volcanismo en el Valle del Cura, provincia de San Juan. Rev Asoc Geol Argent 44(1–2):336–352Google Scholar
  92. Ramos VA, Cristallini EO, Pérez DJ (2002) The Pampean flat-slab of the Central Andes. J South Am Earth Sci 15(1):59–78CrossRefGoogle Scholar
  93. Ramos VA, Zapata T, Cristallini E, Introcaso A (2004) The Andean thrust system—latitudinal variations in structural styles and orogenic shortening. Thrust Tectonics and Hydrocarbon Systems 82:30–50Google Scholar
  94. Ramos VA, Folguera A, Litvak VD, Spagnuolo M (2014) Andean tectonic cycle: From crustal thickening to extension in a thin crust (34°–37° SL). Geosci Front 5:351–367CrossRefGoogle Scholar
  95. Skewes MA, Arévalo A, Floody R, Zuñiga H, Stern CR (2002) The giant El Teniente breccia deposit: hypogene copper distribution and emplacement. Society of Economic Geologists Special Publication 9:299–332Google Scholar
  96. Søager N, Holm PM, Llambías EJ (2013) Payenia volcanic province, southern Mendoza, Argentina: OIB mantle upwelling in a back-arc environment. Chem Geol 349–350:36–53CrossRefGoogle Scholar
  97. Somoza R (1998) Updated azca (Farallon)—South America relative motions during the last 40 My: implications for mountain building in the central Andean region. J South Am Earth Sci 11:211–215CrossRefGoogle Scholar
  98. Somoza R, Ghidella ME (2012) Late Cretaceous to recent platemotions in western South America revisited. Earth Planet Sc Lett 331–332:152–163CrossRefGoogle Scholar
  99. Spagnuolo M, Litvak VD, Folguera A, Ramos VA (2012) Neogene magmatic expansion and mountain building at the southern Central Andes, 36º–37º S, Argentina. J Geodyn 53:81–94CrossRefGoogle Scholar
  100. Sruoga P, Rubinstein NA, Etcheverría MP, Cegarra M, Kay SM, Singer B, Lee J (2008) Estadio inicial del arco volcánico neógeno en la Cordillera Principal de Mendoza (35° S). Rev Asoc Geol Argent 63(3):454–469Google Scholar
  101. Stern CR, Skewes MA (2003) Generation of giant Miocene and Pliocene copper deposits in Central Chile: Role of ridge subduction, decreased subduction angle, increased subduction erosion, crustal thickening, and mafic and adakite-like dacitic magma within long-lived, batholith size, open system magma chambers. In: X Congreso Geológico Chileno, Actas CD, ConcepciónGoogle Scholar
  102. Suárez M, Emparan C (1995) The stratigraphy, geochronologyand paleophysiography of a Miocenefreshwater interarc basin, Southern Chile. J S Am Earth Sci 8:17–31CrossRefGoogle Scholar
  103. Wetten AF (2005) Andesita Cerro Bola: Nueva unidad vinculada al magmatismo mioceno de la Cordillera de Olivares, San Juan, Argentina (30°35′S; 69°30′O). Rev Asoc Geol Argent 60:003–008Google Scholar
  104. Winocur DA, Litvak V, Ramos VA (2015) Magmatic and tectonic evolution of the Oligocene Valle del Cura basin, Main Andes of Argentina and Chile: evidence for generalized extension. Geological Society of London, Special Publications 399:109–130CrossRefGoogle Scholar
  105. Yañez GA, Ranero CR, von Huene R, Díaz J (2001) Magnetic anomaly interpretation across the southern central Andes (32°–34°): the role of the Juan Fernández Ridge in the late Tertiary evolution of the margin. J Geophys Res 106(B4):6325–6345CrossRefGoogle Scholar
  106. Yañez GA, Cembrano J, Pardo M, Ranero CR, Selles D (2002) The Challenger-Juan Fernández–Maipo major tectonic transition of the Nazca-Andean subduction system at 33–34° S: geodynamic evidence and implications. J South Am Earth Sci 15:28–38CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Vanesa D. Litvak
    • 1
    Email author
  • Stella Poma
    • 2
  • Rosemary E. Jones
    • 3
  • Lucía Fernández Paz
    • 1
  • Sofía B. Iannelli
    • 1
  • Mauro Spagnuolo
    • 1
  • Linda A. Kirstein
    • 4
  • Andrés Folguera
    • 1
  • Victor A. Ramos
    • 5
  1. 1.Instituto de Estudios Andinos (IDEAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Universidad de Buenos AiresBuenos AiresArgentina
  2. 2.Instituto de Geociencias Básicas y Aplicadas de Buenos Aires (IGEBA)Universidad de Buenos Aires-ConicetBuenos AiresArgentina
  3. 3.Department of Earth SciencesUniversity of OxfordOxfordUnited Kingdom
  4. 4.School of GeoSciencesUniversity of EdinburghEdinburghUnited Kingdom
  5. 5.Instituto de Estudios Andinos “Don Pablo Groeber”, Departamento de Ciencias Geológicas, FCENUniversidad de Buenos Aires–CONICETBuenos AiresArgentina

Personalised recommendations