Advertisement

The Structure of the Southern Central Andes (Chos Malal Fold and Thrust Belt)

  • Martín Turienzo
  • Natalia Sánchez
  • Fernando Lebinson
  • Luis Dimieri
Chapter
Part of the Springer Earth System Sciences book series (SPRINGEREARTH)

Abstract

The Chos Malal fold and thrust belt, formed during the Andean orogeny, is characterized by the involvement of both the Paleozoic basement and Mesozoic strata of the Neuquén Basin into the deformation. Two detailed structural cross sections, built based on previous field mapping, new subsurface interpretations, and seismic and borehole data, allow characterizing the structural style of this orogenic belt. A close interaction between large thick-skinned structures (first order) and complex thin-skinned structures (second, third, and fourth order), related to the presence of multiple detachments in the sedimentary cover, is recognized. The largest thrusts form basement-involved duplex structures, with a lower detachment located at a depth of about 12–14 km and an upper detachment in the Jurassic evaporites of the Auquilco Formation. Displacement transmitted by these basement sheets in the inner zone of the Chos Malal fold and thrust belt produces a wide region of thin-skinned deformation, which contains second-order fault-bend folds that transfer deformation to the overlying Agrio Formation shales (Early Cretaceous) giving rise to third-order folds and thrusts involving this unit. In the outer zone, the basement-involved thrusts have less displacement and form monoclines and a complex thin-skinned deformation restricted to the deformation front, possibly caused by buttressing effect exerted by the overlying Miocene volcanic sequences. This impediment in forward deformation leads to an important out-of-sequence faulting, whose displacement is compensated by a passive-roof backthrust along the Cretaceous evaporites of the Bajada del Agrio Group forming a triangle zone. Second-order anticlines under this triangle zone, where the seismic data are of low quality, constitute important hydrocarbon oil fields such as El Porton and Filo Morado. Understanding the close relationship between the structures of different order cropping out in the inner zone of the Chos Malal fold and thrust belt is important to interpret the subsurface structures forming hydrocarbon oil fields in the outer zone as well as to identify other complex structures that may lead to new exploration opportunities. Restitution of the structural cross sections allowed calculating a tectonic shortening for this region in the order of 22–25 km (16–18%), higher than estimated by previous authors who generally simplified the thin-skinned deformation and considered the tectonic inversion of normal faults as the main mechanism of deformation in this orogen.

Keywords

Neuquén Basin Balanced cross sections Thick-skinned structures 

Notes

Acknowledgements

The present studies were supported by several grants from CeCyT-UNS (24/H117), ANPCyT (Pict 0166) and CONICET (PIP 0390). Seismic and well data were provided by the Subsecretaría de Minería e Hidrocarburos de la Provincia del Neuquén. We kindly acknowledge the Municipalidad of Chos Malal and Andacollo for collaborating with our stay during the fieldwork. The authors thank Lucía Sagripanti and Emilio Rojas Vera for their reviews.

References

  1. Allmendinger R, Zapata T, Manceda R, Dzelalija F (2004) Trishear kinematic modeling of structures, with examples from the Neuquén Basin, Argentina. In: McClay K (ed) Thrust tectonics and hydrocarbon systems, vol 82, American Association of Petroleum Geologists, Memoir, pp 356–371Google Scholar
  2. Angelozzi G (1995) Nanofósiles calcáreos del pozo YPF Nq. FDT X-2 (Flanco del Tril). Boletín de Informaciones Petroleras 41:56–59Google Scholar
  3. Araujo V, Dimieri L, Frisicale C, Turienzo M, Sánchez N (2013) Emplazamiento del intrusivo Laguna Amarga y su relación con las estructuras tectónicas andinas, sur de la provincia de Mendoza. Revista de la Asociación Geológica Argentina 70(1):457–469Google Scholar
  4. Arregui C, Carbone O, Leanza HA (2011a) Contexto tectosedimentario. In: Leanza HA, Arregui C, Carbone O, Danieli JC, Vallés JM (eds) Geología y Recursos Naturales de la Provincia del Neuquén. Relatorio del XVIII Congreso Geológico Argentino, pp 29–36Google Scholar
  5. Arregui C, Carbone O, Martínez R (2011b) El Grupo Cuyo (Jurásico Temprano-Medio) en la Cuenca Neuquina. In: Leanza HA, Arregui C, Carbone O, Danieli JC, Vallés JM (eds) Geología y Recursos Naturales de la Provincia del Neuquén. Relatorio del XVIII Congreso Geológico Argentino, pp 77–89Google Scholar
  6. Barrionuevo M, Valenzuela M, Olea G, Gutiérrez Pleimling A (2005) Trampas características de las formaciones Triásico-Jurásicas en la plataforma oriental de la Cuenca Neuquina. In: Koslowski E, Vergani G, Boll A (eds) Las Trampas de Hidrocarburos en las Cuencas Productivas de Argentina. VI Congreso de Exploración y Desarrollo de Hidrocarburos, pp 209–224Google Scholar
  7. Booth J, Coward M (1996) Basement faulting and inversion of the NW Neuquén Basin, Argentina. III international symposium on Andean Geodynamics, St. Malo (France), extended abstracts, pp 295–298Google Scholar
  8. Buiter S, Pfiffner A (2003) Numerical models of the inversion of half-graben basins. Tectonics 22 (5). https://doi.org/10.1029/2002TC001417
  9. Carbone O, Franzese J, Limeres M, Delpino D, Martínez R (2011) El Ciclo Precuyano (Triásico Tardío e Jurásico Temprano) en la Cuenca Neuquina. In: Leanza HA, Arregui C, Carbone O, Danieli JC, Vallés JM (eds) Geología y Recursos Naturales de la Provincia del Neuquén. Relatorio del XVIII Congreso Geológico Argentino, pp 63–76Google Scholar
  10. Chauveau V, Niviere B, Cobbold P, Rossello E, Ballard J, Eichenseer H (1996) Structure of the Andean foothills, Chos Malal region, Neuquén Basin, Argentina. III international symposium on Andean Geodynamics, St. Malo (France), extended abstracts, pp 315–318Google Scholar
  11. Charrier R, Pinto L, Rodríguez MP (2007) Tectono-stratigraphic evolution of the Andean orogen in Chile. In: Gibbons W, Moreno T (eds) Geology of Chile, Chapter 3. The Geological Society, London, Special Publication, pp 21–116Google Scholar
  12. Charrier R, Ramos VA, Tapia F, Sagripanti L (2015) Tectono-stratigraphic evolution of the Andean Orogen between 31° and 37° S (Chile and Western Argentina). In: Sepúlveda SA, Giambiagi LB, Moreiras SM, Pinto L, Tunik M, Hoke GD, Farías M (eds) Geodynamic processes in the Andes of Central Chile and Argentina. Geological Society London, Special Publications 399, pp 13–61Google Scholar
  13. Cobbold P, Rossello E (2003) Aptian to recent compressional deformation, foothills of the Neuquén Basin Argentina. Mar Pet Geol 20:429–443CrossRefGoogle Scholar
  14. Cobbold P, Diraison M, Rossello E (1999) Bitumen veins and Eocene Transpression, Neuquén Basin, Argentina. Tectonophysics 314:423–442CrossRefGoogle Scholar
  15. Cobbold P, Rossello E, Roperch P, Arriagada C, Gomez L, Lima C (2007) Distribution, timing, and causes of Andean deformation across South America. In: Ries AC, Butler RW, Graham RH (eds) Deformation of the continental crust “The legacy of Mike Coward”. Geological Society, London, Special Publications, 272, 321–343Google Scholar
  16. Cobbold P, Rosello E, Marquez F (2008) Where is the evidence for Oligocene rifting in the Andes? Is it in the Loncopué Basin of Argentina? In: VII international symposium on Andean Geodynamics, Nice (France), extended abstracts: 148–151Google Scholar
  17. Cristallini EO, Bottesi G, Gavarrino A, Rodriguez L, Tomezzoli R, Comeron R (2006) Synrift geometry of the Neuquén Basin in northeastern Neuquén Province, Argentina. In: Kay SM, Ramos VA (eds) Evolution of an Andean margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35°–39° S lat). Geological Society of America, Special Paper 407, pp 147–162Google Scholar
  18. Cristallini E, Tomezzoli R, Pando G, Gazzera C, Martínez J, Quiroga J, Buhler M, Bechis F, Barredo S, Zambrano O (2009) Controles precuyanos en la estructura de la Cuenca Neuquina. Rev Asoc Geol Argent 65:248–264Google Scholar
  19. Danieli JC, Coppolecchia M, Elissondo M (2011) El Grupo Andacollo (Paleozoico Tardío). In: Leanza HA, Arregui C, Carbone O, Danieli JC, Vallés JM (eds) Geología y Recursos Naturales de la Provincia del Neuquén. Relatorio del XVIII Congreso Geológico Argentino, pp 49–52Google Scholar
  20. Davis D, Suppe J, Dahlen F (1983) Mechanics of fold-and-thrust belts and accretionary wedges. J Geophys Res 88:1153–1172CrossRefGoogle Scholar
  21. Di Giulio A, Ronchi A, Sanfilippo A, Balgord E, Carrapa B, Ramos V (2015) Cretaceous evolution of the Andean margin between 36° S and 40° S latitude through a multi-proxy provenance analysis of Neuquén Basin strata (Argentina). Basin Research 1–21. https://doi.org/10.1111/bre.12176
  22. Dimieri L (1992) Emplazamiento lacolítico a través de retrocorrimientos, Cerro Palao Mahuida, Bardas Blancas, Mendoza. Academia Nacional de Ciencias Exactas, Físicas y Naturales, Monografías 8:163–166Google Scholar
  23. Dula W (1991) Geometric models of listric normal faults and rollover folds. Am Assoc Pet Geol 75(10):1609–1625Google Scholar
  24. Dyhr CT, Holm PM, Llambias EJ, Scherstén A (2013) Subduction controls on Miocene back-arc lavas from Sierra de Huantraico and La Matancilla and new 40Ar/39Ar dating from the Mendoza region, Argentina. Lithos 179:67–83CrossRefGoogle Scholar
  25. Fantín J, Manceda R, Palacio B, López R, Mykietiuk K, Barberis R (2015) Caracterización de las fracturas naturales de las Formaciones Vaca Muerta y Mulichinco en la estructura de Filo Morado, Cuenca Neuquina, Argentina. IX Congreso de Exploración y Desarrollo de Hidrocarburos, pp 541–561Google Scholar
  26. Fenell L, Folguera A, Naipauer M, Gianni G, Rojas Vera E, Bottesi G, Ramos V (2015) Cretaceous deformation of the Southern Central Andes: synorogenic growth strata in the Neuquén Group (35°30′–37° S). Basin Res. 1–22. https://doi.org/10.1111/bre.12135
  27. Folguera A, Ramos VA, Zapata TR, Spagnuolo MG (2007) Andean evolution at the Guañacos and Chos Malal fold and thrust belts (36° 30′–37° S). J Geodyn 44:129–148CrossRefGoogle Scholar
  28. Folguera A, Bottesi G, Zapata T, Ramos VA (2008) Crustal collapse in the Andean backarc since 2 Ma: Tromen volcanic plateau, Southern Central Andes (36°40′–37°30′S). Tectonophysics 459:140–160CrossRefGoogle Scholar
  29. Franzese J, Spalletti L (2001) Late Triassic-Early Jurassic continental extension in southwestern Gondwana: tectonic segmentation and pre-break-up rifting. J South Am Earth Sci 14:257–270CrossRefGoogle Scholar
  30. Galland O, Hallot E, Cobbold P, Ruffet G, de Bremond d′Ars J (2007) Volcanism in a compressional Andean setting: a structural and geochronological study of Tromen volcano (Neuquén province, Argentina). Tectonics 26:1–24. TC4010. https://doi.org/10.1029/2006TC002011
  31. Garrido A, Kramarz A, Forasiepi A, Bond M (2012) Estratigrafía, mamíferos fósiles y edad de las secuencias volcanosedimentarias eoceno-miocenas de la sierra de Huantraico-sierra Negra y cerro Villegas (provincia del Neuquén, Argentina). Andean Geol 39(3):482–510Google Scholar
  32. Giacosa R, Allard J, Foix N, Heredia N (2014) Stratigraphy, structure and geodynamic evolution of the Paleozoic rocks in the Cordillera del Viento (37° S latitude, Andes of Neuquén, Argentina). J Iberian Geol 40:331–348.  https://doi.org/10.5209/rev_JIGE.2014.v40.n2.45301Google Scholar
  33. Giambiagi L, Ghiglione M, Cristallini E, Bottesi G (2009) Kinematic models of basement/cover interactions: insights from the Malargüe fold and thrust belt, Mendoza, Argentina. J Struct Geol 31:1443–1457CrossRefGoogle Scholar
  34. Gómez Omil R, Caniggia J, Borghi P (2015) La Formación Vaca Muerta en la faja plegada de Neuquén y Mendoza. Procesos que controlaron su madurez. IX Congreso de Exploración y Desarrollo de Hidrocarburos, Actas DVD, 71–96Google Scholar
  35. Groeber P (1929) Líneas fundamentales de la geología del Neuquén, sur de Mendoza y regions adyacentes. Dirección General de Minas, Geología e Hidrología, vol 58. Buenos Aires, Publicación, p 110Google Scholar
  36. Groeber P (1946) Observaciones geológicas a lo largo del meridiano 70°. 1. Hoja Chos Malal. Revista de la Sociedad Geológica Argentina 1(3): 177–208Google Scholar
  37. Gulisano C (1981) El ciclo cuyano en el norte de Neuquén y sur de Mendoza. VIII Congreso Geológico Argentino (San Luis) Actas, vol 3, pp 573–592Google Scholar
  38. Gulisano C, Gutiérrez Pleimling A (1995) Field Guide The Jurassic of the Neuquén Basin, a) Neuquén province. Asoc. Geológica Argentina Publicación Especial 158, 111 ppGoogle Scholar
  39. Guzmán C, Cristallini E, Bottesi G (2007) Contemporary stress orientations in the Andean retroarc between 34° S and 39° S from borehole breakout analysis. Tectonics 26. http://dx.doi.org/10.1029/2006TC001958
  40. Gürer D, Galland O, Corfu F, Leanza H, Sassier C (2015) Structure and evolution of volcanic plumbing systems in fold-and-thrust belts: a case study of the Cerro Negro de Tricao Malal, Neuquén Province, Argentina GSA Bulletin. https://doi.org/10.1130/B31341.1
  41. Holmberg E (1975) Descripción geológica de la Hoja 32c, Buta Ranquil (Prov. Mendoza-Neuquén), Bull. 152, 71 pp. Serv. Geol. Minero Argent., Buenos AiresGoogle Scholar
  42. Howell JA, Schwarz E, Spalletti LA, Veiga GD (2005) The Neuquén Basin: an overview. In: Veiga GD, Spalletti LA, Howell JA, Schwarz E (eds.) The Neuquén Basin, Argentina: a case study in sequence stratigraphy and basin dynamics, vol 352. Geological Society of London, London, Special Publications, pp 1–14Google Scholar
  43. Jones PB (1982) Oil and gas beneath east-dipping underthrust faults in the Alberta Foothills, Canada. In: Powers RB (ed) Geologic studies of the Cordilleran thrust belt, Denver. Rocky Mountain Association of Geologists, pp 61–74Google Scholar
  44. Jordan TE, Burns WM, Veiga R, Pángaro F, Copeland P, Kelley S, Mpodozis MC (2001) Extension and basin formation in the southern Andes caused by increased convergence rate. A mid-Cenozoic trigger for the Andes. Tectonics 20:308–324Google Scholar
  45. Kay SM, Copeland P (2006) Early to middle Miocene back-arc magmas of the Neuquén Basin: geochemical consequences of slab shallowing and the westward drift of South America. In: Kay SM, Ramos VA (eds) Evolution of an Andean margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35°–39° S lat). Geol Soc of America, Special Paper, vol 407, pp 185–213Google Scholar
  46. Kay S, Burns W, Copeland PC, Mancilla O (2006). Upper Cretaceous to Holocene magmatism and evidence for transient Miocene shallowing of the Andean subduction zone under the northern Neuquén Basin. In: Kay SM, Ramos VA (eds) Evolution of an Andean margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35°–39° S lat). Geol Soc of America, Special Paper, vol 407, pp 19–60Google Scholar
  47. Kozlowski EE, Cruz CE, Sylwan CA (1996) Geología estructural de la zona de Chos Malal, Cuenca Neuquina, Argentina. XIII Congreso Geológico Argentino y III Congreso de Exploración de Hidrocarburos 1:15–26Google Scholar
  48. Kozlowski EE, Cruz CE, Sylwan CA (1998) Modelo exploratorio en la faja corrida de la Cuenca Neuquina, Argentina. Boletín de Informaciones Petroleras 55:4–23Google Scholar
  49. Leanza HA (2003) Las sedimentitas Huitrinianas y Rayosianas (Cretácico inferior) en el ámbito central y meridional de la Cuenca Neuquina, Argentina. Servicio Geológico Minero Argentino. Serie Contribuciones Técnicas, Geología 2:1–31Google Scholar
  50. Leanza HA (2009) Las principales discordancias del Mesozoico de la Cuenca Neuquina según observaciones de superficie. Rev. del Museo Argentino de Ciencias Naturales, 11, 145–184Google Scholar
  51. Leanza H, Mazzini A, Corfu F, Llambías E, Svensen H, Planke S, Galland O (2013) The Chachil Limestone (Pliensbachian-earliest Toarcian) Neuquén Basin, Argentina: U-Pb age calibration and its significance on the Early Jurassic evolution of southwestern Gondwana. J South Am Earth Sci 42:171–185CrossRefGoogle Scholar
  52. Lebinson F, Turienzo M, Araujo V, Sánchez N, Frisicale C, Dimieri L (2015) Control estructural en el emplazamiento de las rocas ígneas del cerro Caicayén, faja corrida y plegada del Agrio, Neuquén. XVI Reunión de Tectónica, Gral. Roca, Acta de Resúmenes, pp 138–139Google Scholar
  53. Lebinson F, Turienzo M, Sánchez N, Araujo V, Dimieri L (2015b) Geometría y cinemática de las estructuras en el extremo septentrional de la faja plegada y corrida del Agrio, provincia de Neuquén. Revista de la Asociación Geológica Argentina 72(3):299–313Google Scholar
  54. Legarreta L, Gulisano CA (1989) Análisis estratigráfico secuencial de la Cuenca Neuquina (Triásico superior-Terciario inferior, Argentina). In: Chebli G, Spalletti L (eds) Cuencas Sedimentarias Argentinas. Serie Correlación Geológica (6) Universidad Nacional de Tucumán, pp 221–243Google Scholar
  55. Legarreta L, Uliana MA (1991) Jurassic/Cretaceous marine oscillations and geometry of a back-arc basin fill, central Argentine Andes. In: Mc Donald DIM (ed) Sedimentation, Tectonics and Eustacy. I.A.S, London, Special Publication 12, pp 429–450Google Scholar
  56. Llambías EJ, Leanza HA, Carbone O (2007) Evolución tectono-magmática durante el Pérmico al Jurásico Temprano en la Cordillera del Viento (37°05′S–37°15′S): nuevas evidencias geológicas y geoquímicas del inicio de la cuenca Neuquina. Rev Asoc Geol Argent 62(2):217–235Google Scholar
  57. Llambías EJ, Sato AM (2011) Ciclo Gondwánico: la provincia magmática Choiyoi en Neuquén. In: Leanza HA, Arregui C, Carbone O, Danieli JC, Vallés JM (eds) Geología y Recursos Naturales de la Provincia del Neuquén. Relatorio del XVIII Congreso Geológico Argentino, pp 53–62Google Scholar
  58. Maloney KT, Clarke GL, Klepeis KA, Quevedo L (2013) The Late Jurassic to present evolution of the Andean margin: drivers and the geological record. Tectonics 32:1049–1065.  http://doi.org/10.1002/tect.20067
  59. Messager G, Nivière B, Martinod J, Lacan P, Xavier J-P (2010) Geomorphic evidence for PlioQuaternary compression in the Andean foothillsof the southern Neuquén Basin, Argentina. Tectonics 29. https://doi.org/10.1029/2009TC002609
  60. Mosquera A, Silvestro J, Ramos VA, Alarcón M, Zubiri M (2011) La estructura de la Dorsal de Huincul. In: Leanza HA, Arregui C, Carbone O, Danieli JC, Vallés JM (eds) Geología y Recursos Naturales de la Provincia del Neuquén. Relatorio del XVIII Congreso Geológico Argentino, pp 385–397Google Scholar
  61. Nocioni A (1996) Estudio estructural de la Faja Plegada y Corrida de la Cuenca Neuquina—Surmendocina. XIII Congreso Geológico Argentino y III Congreso de Exploración de Hidrocarburos, Actas 2:353–372Google Scholar
  62. Pángaro F, Corbera R, Carbone O, Hinterwimmer G (2002) Los Reservorios del Precuyano. In: Schiuma M, Hinterwimmer G, Vergani G (eds) Rocas Reservorio de las Cuencas Productivas de la Argentina. V Congreso de Exploración y Desarrollo de Hidrocarburos, Mar del Plata, pp 229–274Google Scholar
  63. Periale S, Haring C, Olivieri G, Guerello R, Simonetto L (2015) Exploración en áreas productivas maduras. Malargüe: nueva etapa exploratoria. Cuenca Neuquina, Argentina. IX Congreso de Exploración y Desarrollo de Hidrocarburos. Actas DVD, 3–24Google Scholar
  64. Ploszkiewicz V, Viñes R (1987) Filo Morado: Un descubrimiento exploratorio en cinturón plegado. Boletín de Informaciones Petroleras, Tercera Época IV (10): 97–102Google Scholar
  65. Ramos VA (1999) Plate tectonic setting of the Andean Cordillera. Episodes 22(3):183–190Google Scholar
  66. Ramos VA (2010) The tectonic regime along the Andes: Present-day and Mesozoic regimes. Geol J 45:2–25.  https://doi.org/10.1002/gj.1193CrossRefGoogle Scholar
  67. Ramos V, Barbieri M (1989) El volcanismo Cenozoico de Huantraico: Edad y relaciones isotópicas iniciales, provincia del Neuquén. Rev Asoc Geol Argentina 43:210–223Google Scholar
  68. Ramos VA, Folguera A (2005) Tectonic evolution of the Andes of Neuquén: constraints derived from the magmatic arc and foreland deformation. In: Veiga GD, Spalletti LA, Howell JA, Schwarz E (eds) The Neuquén Basin: a case study in sequence stratigraphy and basin dynamics, vol 252. Special Publications, Geol Soc London, pp 15–35Google Scholar
  69. Ramos VA, Kay SM (2006) Overview of the evolution of the southern Central Andes of Mendoza and Neuquén (35°–39° S latitude). In: Kay SM, Ramos VA (eds) Evolution of an Andean margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35°–39° S Latitude). Geological Society of America, Special Paper, vol 407, pp 1–17Google Scholar
  70. Ramos VA, Zapata T, Cristallini E, Introcaso A (2004) The Andean thrust system—latitudinal variations in structural styles and orogenic shortening. In: McClay KR (ed) Thrust tectonics and hydrocarbon systems, vol 82. American Association of Petroleum Geologists, Memoir, pp 30–50Google Scholar
  71. Ramos VA, Mosquera A, Folguera A, García Morabito E (2011) Evolución tectónica de los Andes y del Engolfamiento Neuquino adyacente. In: Leanza HA, Arregui C, Carbone O, Danieli JC, Vallés JM (eds) Geología y Recursos Naturales de la Provincia de Neuquén. Relatorio del VXIII Congreso Geológico Argentino, Buenos Aires, pp 335–348Google Scholar
  72. Ramos VA, Litvak VD, Folguera A, Spagnuolo M (2014) An Andean tectonic cycle: from crustal thickening to extension in a thin crust (34°–37°SL). Geosci Front 5:351–367.  https://doi.org/10.1016/j.gsf.2013.12.009CrossRefGoogle Scholar
  73. Rapela C, Llambías E (1985) La secuencia andesítica terciaria de Andacollo, Neuquén, Argentina. IV Congreso Geológico Chileno, Antofagasta, Actas 4:458–488Google Scholar
  74. Rojas Vera EA, Folguera A, Zamora Valcarce G, Bottesi G, Ramos VA (2014) Structure and development of the Andean system between 36° and 39° S. J Geodyn 73:34–52.  https://doi.org/10.1016/j.jog.2013.09.001CrossRefGoogle Scholar
  75. Rojas Vera E, Mescua J, Folguera A, Becker TP, Sagripanti L, Fennell L, Orts D, Ramos VA (2015a) Evolution of the Chos Malal and Agrio fold and thrust belts, Andes of Neuquén: insights from structural analysis and apatite fission track dating. In: Folguera A, Alvarado P, Arriagada C, Ramos V (eds) Tectonics of the Argentine and Chilean Andes, J South Am Earth Sci, Special Issue 64 (2), 418–433Google Scholar
  76. Rojas Vera E, Orts D, Folguera A, Zamora Valcarce G, Bottesi G, Fennell L, Chiachiarelli F, Ramos VA (2015b) The transitional zone between the Southern Central and Northern Patagonian Andes (36–39° S). In: Folguera A, Naipauer M, Sagripanti L, Ghiglione M, Orts D, Giambiagi L (eds) Growth of the Southern Andes. Springer ESS, pp 99–114Google Scholar
  77. Sánchez N (2015) Evolución tectónica de las estructuras andinas en la región del río Neuquén (~37°20′ L.S), faja corrida y plegada de Chos Malal, provincia de Neuquén. PhD thesis (unpublished), Universidad Nacional del Sur, 220 pp, Bahía BlancaGoogle Scholar
  78. Sánchez N, Turienzo M, Dimieri L, Araujo V (2014) Reconstrucción estructural a los 37°18′S, faja corrida y plegada de Chos Malal, Provincia de Neuquén. Revista de la Asociación Geológica Argentina 71(2):233–246Google Scholar
  79. Sánchez N, Turienzo M, Lebinson F, Araujo V, Coutand I, Dimieri L (2015) Structural style of the Chos Malal fold-and-thrust belt, Neuquén Basin, Argentina: relationship between thick and thin-skinned tectonics. In: Folguera A, Alvarado P, Arriagada C, Ramos V (eds) Tectonics of the Argentine and Chilean Andes, Special Issue J South Am Earth Sci 64(2), 399–417Google Scholar
  80. Sagripanti L, Folguera A, Giménez M, Rojas Vera EA, Fabiano JJ, Molnar N, Fennell L, Ramos VA (2014) Geometry of middle to late Triassic extensional deformation pattern in the Cordillera del Viento (Southern Central Andes): a combined field and geophysical study. J Iber Geol 40:349–366CrossRefGoogle Scholar
  81. Sagripanti L, Rojas Vera EA, Gianni GM, Folguera A, Harvey JE, Farías M, Ramos VA (2015a) Neotectonic reactivation of the western section of the Malargüe fold and thrust belt (Tromen volcanic plateau, Southern Central Andes). Geomorphology 232:164–181CrossRefGoogle Scholar
  82. Sagripanti L, Folguera A, Fennell L, Rojas Vera EA, Ramos VA (2015b) Progression of the deformation in the Southern Central Andes (37° S). In: Folguera A, Naipauer M, Sagripanti L, Ghiglione M, Orts D, Giambiagi L (eds) Growth of the Southern Andes. Springer ESS, pp 115–132Google Scholar
  83. Selva G, Vittone J, Vergani G (2005) Trampas Estructurales en el Pie de Sierra de la Faja Plegada Neuquina. In: Kozlowski E, Vergani G, Boll A (eds) Las Trampas de Hidrocarburos en las Cuencas Productivas de Argentina. VI Congreso de Exploración y Desarrollo de Hidrocarburos, IAPG, pp 141–156Google Scholar
  84. Silvestro J, Atencio M (2009) La cuenca cenozoica del Río Grande y Palauco: edad, evolución y control estructural, faja plegada de Malargüe. Rev Asoc Geol Argentina 65(1):154–169Google Scholar
  85. Stipanicic P (1965) El Jurásico de la Vega de la Veranada (Neuquén), el Oxfordense y el diastrofismo diveseano (Agassiz-Yaila) en Argentina. Revista de la Asociación Geológica Argentina 20(4):403–478Google Scholar
  86. Tunik M, Folguera A, Naipauer M, Pimentel MM, Ramos VA (2010) Early uplift and orogenic deformation in the Neuquén Basin: constraints on the Andean uplift from U-Pb and Hf isotopic data of detrital zircons. Tectonophysics 489(1–4):258–273CrossRefGoogle Scholar
  87. Turienzo M, Dimieri L, Frisicale C, Araujo V, Sánchez N (2012) Cenozoic structural evolution of the Argentinean Andes at 34°40′S: a close relationship between thick and thin-skinned deformation. Andean Geol 39(2):317–357Google Scholar
  88. Turienzo M, Sánchez N, Dimieri L, Lebinson F, Araujo V. 2014. Tectonic repetitions of the Early Cretaceous Agrio Formation in the Chos Malal fold-and-thrust belt, Neuquén basin, Argentina: geometry, kinematics and structural implications for Andean building. J South Am Earth Sci 53: 1–19Google Scholar
  89. Veiga R, Lara ME, Bruveris P (1999) Distribución de hidrocarburos sobre el margen externo en una cuenca de tras-arco. Ejemplos en la cuenca Neuquina, Argentina. Boletín de Informaciones Petroleras 60:142–164Google Scholar
  90. Vergani G, Tankard AJ, Belotti HJ, Welsink HJ (1995) Tectonic Evolution and Paleogeography of the Neuquén Basin, Argentina. In: Tankard J, Suarez SR, Welsink J (eds) Petroleum Basin of South America: Am Assoc Petroleum Geologists, Memoir, vol 62, pp 383–402Google Scholar
  91. Viñes R (1989) Interpretación de la estructura de Filo Morado. I Congreso Nacional de Exploración de Hidrocarburos (Argentina). Actas 2:1107–1124Google Scholar
  92. Williams G, Powell C, Cooper M (1989) Geometry and kinematics of inversion tectonics. In: Cooper M, Williams G (eds) Inversion Tectonics. Geological Society of London, Special Publication 44, pp 3–15Google Scholar
  93. Yamada Y, McClay K (2004) 3-D Analog modeling of inversion thrust structures. In: McClay KR (ed) Thrust tectonics and hydrocarbon systems, vol 82. American Asociation of Petroleum Geologists, pp 276–301Google Scholar
  94. Zamora Valcarce G, Zapata T (2005) Estilo estructural del frente de la faja plegada Neuquina a los 37° S. VI Congreso de Exploración y Desarrollo de Hidrocarburos, Relatorio, CD roomGoogle Scholar
  95. Zamora Valcarce G, Zapata T, Ansa A, Selva G (2006) Three-dimensional structural modeling and its application for development of the El Portón field, Argentina. Am Assoc Petrol Geol Bull 90(3):307–319Google Scholar
  96. Zapata T, Brissón I, Dzelalija F (1999) La Estructura de la faja plegada y corrida andina en relación con el control del basamento de la Cuenca Neuquina. Boletín de informaciones Petroleras, pp 112–121Google Scholar
  97. Zapata T, Dzelalija F, Olivieri G (2001) Desarrollo de reservorios fracturados de la formación Mulichinco usando modelado estructural 3D: yacimiento Filo Morado, Cuenca Neuquina, Argentina. Boletín de Informaciones Petroleras 66:38–47Google Scholar
  98. Zöllner W, Amos AJ (1973) Descripción geológica de la Hoja 32b, Chos Malal (Prov. Neuquén), Bull. 143, 91 pp. Serv. Geol Minero Argent, Buenos AiresGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Martín Turienzo
    • 1
  • Natalia Sánchez
    • 1
  • Fernando Lebinson
    • 1
  • Luis Dimieri
    • 1
  1. 1.Departamento de Geología, Instituto Geológico del Sur (INGEOSUR, UNS-CONICET)Universidad Nacional del SurBahía BlancaArgentina

Personalised recommendations