Mantle Influence on Andean and Pre-Andean Topography

  • Federico M. Dávila
  • Carolina Lithgow-Bertelloni
  • Federico Martina
  • Pilar Ávila
  • Julieta Nóbile
  • Gilda Collo
  • Miguel Ezpeleta
  • Horacio Canelo
  • Francisco Sánchez
Part of the Springer Earth System Sciences book series (SPRINGEREARTH)


Mantle convection can drive long-wavelength and low-amplitude topography, which can occur synchronously and superimposed to tectonics. The discrimination between these two topographic components, however, is difficult to assert. This is because there are still several uncertainties and debates in the geodynamic community, for example, the scales and rates of dynamic topography. Geological, geomorphological, geophysical measurements, and/or landscape analyses might assist to validate models. In this contribution, we provide new geological evidences along the Central and Patagonian Andes, which demonstrate that dynamic topography has been an important component on the South American landscape formation as well as in the ancient western Gondwana. Our examples in the Argentine Pampas show that dynamic topography is required to explain not only the basin subsidence but also the whole observed topography. We also suggest that the dynamic components in this region are much lower than numerical models (average dynamic subsidence rates of ~0.04 mm/yr—this work— which contrast with the ~0.1 mm/yr estimated in the US). We also propose two strategies to analyze ancient cases. The first requires of comparing a total elevation proxy, like the equilibrium lines (or ELA) in glaciated areas, with model topography derived from geochemical studies of mantle rocks. A second strategy was the analysis of the Triassic rifting evolution of western Argentina (post-rift sag deposits). Sag deposit thicknesses exceed 2 km, which do not correlate with the 100 m thick thermal calculated by rift subsidence modeling.


Dynamic uplift Dynamic subsidence Mantle Flat subduction zone Glaciations Triassic rifting 



FONCyT, PUE 2016 CICTERRA CONICET, and SECyT-UNC (Argentina), the Royal Society and UCL (UK), and the Marie Curie Fellowship IIF Program (ANDYN Project, EU) supported our studies in South America.


  1. Astini RA, Dávila FM, López Gamundí OR, Gómez F, Collo G, Ezpeleta M, Martina F, Ortiz A (2005) Cuencas de la región precordillerana. In: Chebli G, Spalletti L (eds) Frontera Exploratoria de la Argentina, Buenos Aires, pp 115–145Google Scholar
  2. Astini RA, Dávila FM, Martina F (2011) La Formación Los Llantenes en la Precordillera de Jagüé (La Rioja) y la identificación de un episodio de rifting en la evolución de las cuencas del Paleozoico superior en el oeste argentine. Revista Geológica de Chile 38:245–267Google Scholar
  3. Astini RA, Tauber AA, Marengo HG, Oviedo N, Del V (2014) Cubierta cenozoica (Paleógeno-Neógeno). In: Relatorio de la geología y recursos Naturales de la Provincia de Córdoba, Asociación Geológica Argentina, pp 539–591Google Scholar
  4. Bajolet F, Galeano J, Funiciello F, Moroni M, Negredo AM, Faccenna C (2012) Continental delamination: insights from laboratory models. Geochemistry Geophysics Geosystems 13:Q02009.
  5. Baristeas N, Anka Z, Di Primio R, Rodriguez JF, Marchal D, Domínguez F (2012) Distribution of hydrocarbon leakage indicators in the Malvinas Basin, offshore Argentine continental margin. Mar Geol 332:56–74CrossRefGoogle Scholar
  6. Boutonnet E, Arnaud N, Guivel C, Lagabrielle Y, Scalabrino B, Espinoza F (2010) Subduction of the South Chile active spreading ridge: A 17Ma to 3Ma magmatic record in central Patagonia (western edge of Meseta del Lago Buenos Aires, Argentina). J Volcanol Geoth Res 189(3):319–339Google Scholar
  7. Breitsprecher K, Thorkelson DJ (2009) Neogene kinematic evolution of the Nazca e Antarctice Phoenix slab windows beneath Patagonia and the Antarctic Peninsula. Tectonophysics 464, pp 10–20Google Scholar
  8. Burgess PM, Gurnis M, Moresi L, (1997) Formation of sequences in the cratonic interior of North America by interaction between mantle, eustatic, and stratigraphic processes. Geol Soc Am Bull 109(12):1515–1535Google Scholar
  9. Cawood PA (2005) Terra Australis Orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic. Earth-Sci Rev 69(3):249–279CrossRefGoogle Scholar
  10. Colli L, Fichtner A, Bunge HP (2013) Full waveform tomography of the upper mantle in the South Atlantic region: Imaging a westward fluxing shallow asthenosphere? Tectonophysics 604:26–40CrossRefGoogle Scholar
  11. Condom T, Coudrain A, Sicart JE, Théry S (2007) Computation of the space and time evolution of equilibrium-line altitudes on Andean glaciers (10°N–55° S). Global Planet Change 59(1):189–202CrossRefGoogle Scholar
  12. Conrad CP, Husson L (2009) Influence of dynamic topography on sea level and its rate of change. Lithosphere 1:110–120. Scholar
  13. Cuitiño JI, Scasso RA (2010) Sedimentología y paleoambientes del Patagoniano y su transición a la Formación Santa Cruz al sur del Lago Argentino, Patagonia Austral. Rev Asoc Geol Argent 66(3):406–417Google Scholar
  14. Dahlquist JA, Alasino PH, Bello C (2014) Devonian F-rich peraluminous A-type magmatism in the proto-Andean foreland (Sierras Pampeanas, Argentina): geochemical constraints and petrogenesis from the western-central region of the Achala batholith. Mineral Petrol 108(3):391–417Google Scholar
  15. Dahlquist JA, Verdecchia SO, Baldo EG, Basei MA, Alasino PH, Urán GA, Zandomeni PS (2016) Early Cambrian U-Pb zircon age and Hf-isotope data from the Guasayán pluton, Sierras Pampeanas, Argentina: implications for the northwestern boundary of the Pampean arc. Andean Geol 43(1)Google Scholar
  16. Dávila FM, Carter A (2013) Exhumation history of the Andean broken foreland revisited. Geology 41(4):443–446CrossRefGoogle Scholar
  17. Dávila FM, Lithgow-Bertelloni C (2013) Dynamic topography in South America. J South Am Earth Sci 43:127–144CrossRefGoogle Scholar
  18. Dávila FM, Lithgow-Bertelloni C (2015) Dynamic uplift during slab flattening. Earth Planet Sci Lett 425:34–43CrossRefGoogle Scholar
  19. Dávila FM, Lithgow-Bertelloni C, Giménez M (2010) Tectonic and dynamic controls on the topography and subsidence of the Argentine Pampas: The role of the flat slab. Earth Planet Sci Lett 295(1):187–194CrossRefGoogle Scholar
  20. Divins DL (2008) NGDC Total sediment thickness of the world’s oceans and marginal seas.
  21. Eakin CM, Lithgow-Bertelloni C, Dávila FM (2014) Influence of Peruvian flat-subduction dynamics on the evolution of the Amazon basin. Earth Planet Sci Lett 404:250–260. Scholar
  22. Enkelmann E, Ridgway KD, Carignano C, Linnemann U (2014) A thermochronometric view into an ancient landscape: Tectonic setting, development, and inversion of the Paleozoic eastern Paganzo basin, Argentina. Lithosphere 6(2):93–107CrossRefGoogle Scholar
  23. Espurt N, Baby P, Brusset S, Roddaz M, Hermoza W, Regard V, Antoine P-O, Salas-Gismondi R, Bolaños R (2007) How does the Nazca Ridge subduction influence the modern Amazonian foreland basin? Geology 35:515–518CrossRefGoogle Scholar
  24. Flament N, Gurnis M, Muller RD (2013) A review of observations and models of dynamic topography. Lithosphere 5(2):189–210.
  25. Flament N, Gurnis M, Müller RD, Bower DJ, Husson L (2015) Influence of subduction history on South American topography. Earth Planet Sci Lett 430:9–18CrossRefGoogle Scholar
  26. Fosdick JC, Romans BW, Fildani A, Bernhardt A, Calderón M, Graham SA (2011) Kinematic evolution of the Patagonian retroarc fold-and-thrust belt and Magallanes foreland basin, Chile and Argentina, 51 30′ S. Geol Soc Am Bull 123(9–10):1679–1698Google Scholar
  27. Flament N, Gurnis M, Müller RD, Bower DJ, Husson L (2015) Influence of subduction history on South American topography. Earth Planet Sci Lett 430:9–18CrossRefGoogle Scholar
  28. Garcia‐Castellanos D, Fernandez M, Torné M (2002) Modeling the evolution of the Guadalquivir foreland basin (southern Spain). Tectonics 21(3)Google Scholar
  29. Gibson SA, Geist D (2010) Geochemical and geophysical estimates of lithospheric thickness variation beneath Galápagos. Earth Planet Sci Lett 300(3):275–286Google Scholar
  30. Gilbert H, Beck S, Zandt G (2006) Lithospheric and upper mantle structure of central Chile and Argentina. Geophys J Int 165(1):383–398CrossRefGoogle Scholar
  31. Gorring ML, Kay SM (2001) Mantle processes and sources of Neogene slab-window magmas in southern Patagonia. J Petrol 42(6):1067–1094CrossRefGoogle Scholar
  32. Gorring M, Kay S, Zeitler P, Ramos V, Rubiolo D, Fernandez M, Panza J (1997) Neogene Patagonian plateau lavas: continental magmas associated with ridge collision at the Chile Triple Junction. Tectonics 16(1):1–17CrossRefGoogle Scholar
  33. Gorring M, Singer B, Gowers J, Kay S (2003) Plio-Pleistocene basalts from the Meseta del Lago Buenos Aires, Argentina: evidence for asthenosphere lithosphere interactions during slab window magmatism. Chem Geol 193:215–235CrossRefGoogle Scholar
  34. Grand SP (2002) Mantle shear–wave tomography and the fate of subducted slabs. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 360(1800):2475–2491CrossRefGoogle Scholar
  35. Gruetzner J, Uenzelmann‐Neben G, Franke D (2012) Variations in sediment transport at the Central Argentine continental margin during the Cenozoic. Geochem Geophys Geosyst 13(10)Google Scholar
  36. Guillaume B, Martinod J, Husson L, Roddaz M, Riquelme R (2009) Neogene uplift of central eastern Patagonia: dynamic response to active spreading ridge subduction? Tectonics 28(TC2009).
  37. Guillaume B, Moroni M, Funiciello F, Martinod J, Faccenna C (2010) Mantle flow and dynamic topography associated with slab window opening: Insights from laboratory models. Tectonophysics 496(1):83–98CrossRefGoogle Scholar
  38. Guillaume B, Gautheron C, Simon-Labric T, Martinod J, Roddaz M, Douville E (2013) Dynamic topography control on Patagonian relief evolution as inferred from low temperature thermochronology. Earth Planet Sci Lett 364:157–167CrossRefGoogle Scholar
  39. Gulbranson EL, Montañez IP, Schmitz MD, Limarino CO, Isbell JL, Marenssi SA, Crowley JL (2010) High-precision U-Pb calibration of Carboniferous glaciation and climate history, Paganzo Group, NW Argentina. Geol Soc Am Bulletin 122(9–10):1480–1498CrossRefGoogle Scholar
  40. Gurnis M (1990) Ridge spreading, subduction and sea level fluctuations. Science 250:970–972CrossRefGoogle Scholar
  41. Gurnis M (1992) Rapid continental subsidence following the initiation and evolution of subduction. Science 255(5051):1556–1558CrossRefGoogle Scholar
  42. Gurnis M, Mitrovica JX, Ritsema J, van Heijst H (2000) Constraining mantle density structure using geological evidence of surface uplift rates: The case of the African Superplume. Geochem Geophys Geosyst 1:1525–2027. Scholar
  43. Gutscher MA (2002) Andean subduction styles and their effect on thermal structure and interplate coupling. J South Am Earth Sci 15(1):3–10CrossRefGoogle Scholar
  44. Hager BH, O’Connell RJ (1981) A simple model of plate dynamics and mantle convection. J Geophys Res 86(B6):4843–4867CrossRefGoogle Scholar
  45. Hager BH, O’Connell RJ (1979) Kinematic models of large-scale flow in the Earth’s mantle. J Geophys Res 84:1031–1048CrossRefGoogle Scholar
  46. Hager BH, Clayton RW, Richards MA, Dziewonski AM, Comer RP (1985) Lower mantle heterogeneity, dynamic topography, and the geoid. Nature 313:541–545CrossRefGoogle Scholar
  47. Han L, Gurnis M (1999) How valid are dynamic models of subduction and convection when plate motions are prescribed? Physics of Earth and Planetary Interiors 110:235–246CrossRefGoogle Scholar
  48. Heine C, Müller RD, Steinberger B, Torsvikb TH (2008) Subsidence in intracontinental basins due to dynamic topography. Phys Earth Planet Inter 171:252–264CrossRefGoogle Scholar
  49. Hohertz WL, Carlson RL (1998) An independent test of thermal subsidence and asthenosphere flow beneath the Argentine Basin. Earth Planet Sci Lett 161:73–83CrossRefGoogle Scholar
  50. Husson L, Conrad CP, Faccenna C (2012) Plate motions, Andean orogeny, and volcanism above the South Atlantic convection cell. Earth Planet Sci Lett 317:126–135CrossRefGoogle Scholar
  51. Isbell JL, Henry LC, Gulbranson EL, Limarino CO, Fraiser ML, Koch ZJ, Dineen AA (2012) Glacial paradoxes during the late Paleozoic ice age: evaluating the equilibrium line altitude as a control on glaciation. Gondwana Res 22(1):1–19CrossRefGoogle Scholar
  52. Jordan TE, Zeitler P, Ramos VA, Gleadow AJW (1989) Thermochronometric data on the development of the basement peneplain in the Sierras Pampeanas, Argentina. J South Am Earth Sci 2:207–222CrossRefGoogle Scholar
  53. Kay SM, Gordillo CE (1994) Pocho volcanic rocks and the melting of depleted continental lithosphere above a shallowly dipping subduction zone in the Central Andes. Contrib Mineral Petr 117:25–44CrossRefGoogle Scholar
  54. Lachenbruch AH, Morgan P (1990) Continental extension, magmatism and elevation: Formal relations and rules of thumb. Tectonophysics 174:39–62. Scholar
  55. Lagabrielle Y, Suárez M, Rossello EA, Hérail G, Martinod J, Régnier M, de la Cruz R (2004) Neogene to Quaternary tectonic evolution of the Patagonian Andes at the latitude of the Chile Triple Junction. Tectonophysics 385(1):211–241CrossRefGoogle Scholar
  56. Lithgow-Bertelloni C, Richards MA (1998) The dynamics of Cenozoic and Mesozoic plate motions. Rev Geophys 36: 27–78 Magoon, LB. y Dow, WG (eds) 1994. The petroleum system from source to trap. AAPG Memoir 60Google Scholar
  57. Lithgow-Bertelloni C, Silver PG (1998) Dynamic topography, plate driving forces and the African superswell. Nature 395(6699):269–272CrossRefGoogle Scholar
  58. Lithgow-Bertelloni C, Gurnis M (1997) Cenozoic subsidence and uplift of continents from time-varying dynamic topography. Geology 25(8):735–738CrossRefGoogle Scholar
  59. Lithgow‐Bertelloni C, Guynn JH (2004) Origin of the lithospheric stress field. J Geophys Res: Solid Earth 109(B1)Google Scholar
  60. Liu L, Gurnis M (2008) Simultaneous inversion of mantle properties and initial conditions using an adjoint of mantle convection. J Geophys Res 113(B08405).
  61. Liu S, Nummedal D (2004) Late Cretaceous subsidence in Wyoming: quantifying the dynamic component. Geology 32:397–400CrossRefGoogle Scholar
  62. Liu L, Spasojevi´c S, Gurnis M (2008) Reconstructing Farallon plate subduction beneath North America back to the Late Cretaceous. Science 322:934–938Google Scholar
  63. Liu S, Nummedal D, Liu L (2011) Migration of dynamic subsidence across the Late Cretaceous United States Western Initerior Basin in response to Farallon plate subduction. Geology 39:555–558CrossRefGoogle Scholar
  64. Loegering MJ, Anka Z, Autin J, Di Primio R, Marchal D, Rodriguez JF, Vallejo E (2013) Tectonic evolution of the Colorado Basin, offshore Argentina, inferred from seismo-stratigraphy and depositional rates analysis. Tectonophysics 604:245–263CrossRefGoogle Scholar
  65. Mantle GW, Collins WJ (2008) Quantifying crustal thickness variations in evolving orogens: Correlation between arc basalt composition and Moho depth. Geology 36(1):87–90CrossRefGoogle Scholar
  66. Marengo HG (2006) Micropaleontología y estratigrafía del Mioceno marino de la Argentina: Las transgresiones de Laguna Paiva y del “Entrerriense-Paranense”. M. S. thesis. Buenos Aires University, p 124. UnpublishedGoogle Scholar
  67. Martinelli RV, Franzin HJ (1996) Cuencas de Rawson y Península Valdés. In: Ramos VA, Turic MA (eds) Geología y recursos naturales de la Plataforma continental Argentina. Relatorio del XIIIº Congreso Geológico Argentino y IIIº Congreso de Exploración de Hidrocarburos, Buenos Aires, pp 159–170Google Scholar
  68. McKenzie D (1978) Some remarks on the development of sedimentary basins. Earth Planet Sci Lett 40(1):25–32CrossRefGoogle Scholar
  69. Milana JP, Alcober OA (1994) Modelo tectosedimentario de la cuenca triásica de Ischigualasto (San Juan, Argentina). Rev Asoc Geol Argent 49:217–235Google Scholar
  70. Mitrovica JX, Beaumont C, Jarvis GT (1989) Tilting of the continental interior by the dynamical effects of subduction. Tectonics 8:1079–1094CrossRefGoogle Scholar
  71. Moresi L, Gurnis M (1996) Constraints on the lateral strength of slabs from three-dimensional dynamic flow models. Earth Planet Sci Lett 138(1):15–28CrossRefGoogle Scholar
  72. Müller RD, Roest WR, Royer JY, Gahagan LM, Sclater JG (1997) Digital isochrons of the world’s ocean floor. J Geophys Res: Solid Earth 102(B2):3211–3214CrossRefGoogle Scholar
  73. Nóbile JC, Collo G, Dávila FM, Martina F, Wemmer K (2015) Successive reactivation of older structures under variable heat flow conditions evidenced by K-Ar fault gouge dating in Sierra de Ambato, northern Argentine broken foreland. J South Am Earth Sci 64:152–165CrossRefGoogle Scholar
  74. O’Reilly SY, Zhang M, Griffin WL, Begg G, Hronsky J (2009) Ultradeep continental roots and their oceanic remnants: A solution to the geochemical “mantle reservoir” problem? Lithos 112:1043–1054CrossRefGoogle Scholar
  75. Parsons B, McKenzie D (1978) Mantle convection and the thermal structure of the plates. J Geophysic Res 83(B9):4485–4496CrossRefGoogle Scholar
  76. Pedoja K, Husson L, Regard V, Cobbold PR, Ostanciaux E, Johnson ME, Kershaw S, Saillard M, Martinod J, Furgerot L, Weill P, Delcaillau B (2011) Relative sea-level fall since the last interglacial stage: are coasts uplifting worldwide? Earth Sci Rev. Scholar
  77. Pysklywec RN, Mitrovica JX (1999) The role of subduction-induced subsidence in the evolution of the Karoo Basin. J Geol 107:155–164CrossRefGoogle Scholar
  78. Ramos VA (2009) Anatomy and global context of the Andes: main geologic features and the Andean orogenic cycle. In: Kay SM, Ramos VA, Dickinson W (eds) Backbone of the Americas: Shallow subduction, Plateau uplift, and Ridge and Terrane collision. Geol Soc Am, Memoir 204, pp 31–65Google Scholar
  79. Ramos VA, Jordan TE, Allmendinger RW, Mpodozis C, Kay SM, Cortés JM, Palma M (1986) Paleozoic terranes of the central Argentine-Chilean Andes. Tectonics 5(6):855–880CrossRefGoogle Scholar
  80. Ricard Y, Chambat F, Lithgow-Bertelloni C (2006) Gravity observations and 3D structure of the Earth. Comptes Rendus de l’Acad (c)mie des Sciences. Comptes Rendus Geoscience 338:992–1001Google Scholar
  81. Richards MA, Hager BH (1984) Geoid anomalies in a dynamic earth. J Geophys Res 89:5987–6002CrossRefGoogle Scholar
  82. Roberts GG, White N (2010) Estimating uplift rate histories from river profiles using African examples. J Geophys Res: Solid Earth 115(B2)Google Scholar
  83. Roberts GG, White NJ, Martin‐Brandis GL, Crosby AG (2012) An uplift history of the Colorado Plateau and its surroundings from inverse modeling of longitudinal river profiles. Tectonics 31(4)Google Scholar
  84. Ruskin BG, Dávila FM, Hoke GD, Jordan TE, Astini RA, Alonso R (2011) Stable isotope composition of middle Miocene carbonates of the Frontal Cordillera and Sierras Pampeanas: Did the Paranaense seaway flood western and central Argentina? Palaeogeogr Palaeoclimatol Palaeoecol 308(3):293–303CrossRefGoogle Scholar
  85. Russo RM, VanDecar JC, Comte D, Mocanu VI, Gallego A, Murdie RE (2010) Subduction of the Chile ridge: uppermantle structure and flow. GSA Today 20(9):4–10CrossRefGoogle Scholar
  86. Scalabrino B, Lagabrielle Y, Malavieille J, Dominguez S, Melnick D, Espinoza F, Rossello E (2010) A morphotectonic analysis of central Patagonian Cordillera: Negative inversion of the Andean belt over a buried spreading center? Tectonics 29(2)Google Scholar
  87. Shephard GE, Liu L, Gurnis M, Muller RD (2010) Miocene drainage reversal of the Amazon River driven by plate-mantle interaction. Nat Geosci 3:870–875CrossRefGoogle Scholar
  88. Shephard GE, Liu L, Müller RD, Gurnis M (2012) Dynamic topography and anomalously negative residual depth of the Argentine Basin. Gondwana Res 22(2):658–663CrossRefGoogle Scholar
  89. Shephard GE, Müller RD, Seton M (2013) The tectonic evolution of the Arctic since Pangea breakup: Integrating constraints from surface geology and geophysics with mantle structure. Earth-Sci Rev 124:148–183Google Scholar
  90. Spasojevic S, Liu L, Gurnis M, Muller RD (2008) The case for dynamic subsidence of the United States east coast since the Eocene. Geophys Res Lett 35, L08305.
  91. Spasojevic S, Liu L, Gurnis M (2009) Adjoint models of mantle convection with seismic, plate motion, and stratigraphic constraints: North America since the Late Cretaceous. Geochem Geophys Geosyst 10(Q05W02).
  92. Steinberger B (2007) Effects of latent heat release at phase boundaries on flow in the Earth’s mantle, phase boundary topography and dynamic topography at the Earth’s surface. Phys Earth Planet Inter 164(1–2):2–20. Scholar
  93. Tackley PJ, Stevenson DJ, Glatzmaier GA, Schubert G (1993) Effects of an endothermic phase transition at 670 km depth on a spherical model of convection in the Earth’s mantle. Nature 361:699–704CrossRefGoogle Scholar
  94. Torsvik TH, Rousse S, Labails C, Smethurst MA (2009) A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin. Geophys J Int 177(3):1315–1333CrossRefGoogle Scholar
  95. Turcotte D, Schubert G (2002) Geodynamics. Cambridge University PressGoogle Scholar
  96. Tyrrell T, Zeebe RE (2004) History of carbonate ion concentration over the last 100 million years. Geochim Cosmochim Acta 68(17):3521–3530CrossRefGoogle Scholar
  97. Winterbourne J, Crosby A, White NJ (2009) Depth, age and dynamic topography of oceanic lithosphere beneath heavily sedimented Atlantic margin. Earth Planet Sci Lett 287(1–2):137–151. Scholar
  98. Zeebe RE (2012) History of seawater carbonate chemistry, atmospheric CO2, and ocean acidification. Annu Rev Earth Planet Sci 40:141–165CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Federico M. Dávila
    • 1
  • Carolina Lithgow-Bertelloni
    • 2
  • Federico Martina
    • 1
  • Pilar Ávila
    • 1
  • Julieta Nóbile
    • 1
  • Gilda Collo
    • 1
  • Miguel Ezpeleta
    • 1
  • Horacio Canelo
    • 1
  • Francisco Sánchez
    • 1
  1. 1.CICTERRACONICET—FCEFyN—Universidad Nacional de CórdobaCórdobaArgentina
  2. 2.University College LondonLondonEngland

Personalised recommendations