Paleogene Arc-Related Volcanism in the Southern Central Andes and North Patagonia (39°–41° S)

  • Sofía B. Iannelli
  • Lucía Fernández Paz
  • Vanesa D. Litvak
  • Rosemary E. Jones
  • Miguel E. Ramos
  • Andrés Folguera
  • Victor A. Ramos
Part of the Springer Earth System Sciences book series (SPRINGEREARTH)


The influence of tectonic processes in evolution of magmatic suites evaluated through their geochemical signature has always been a subject of debate. Late Paleocene arc volcanism in the Southern Central Andes, particularly in North Patagonia, can be used to infer a direct relationship between magmatic episodes and tectonic changes along the Andean margin. Eocene arc-related volcanism (~44 Ma) in the North Patagonian Andes shows evidence for limited influence of the subducting slab on the composition of arc magmas and they exhibit an alkaline tendency. By Oligocene times (~29 Ma), arc volcanic sequences in the Auca Pan depocenter show predominantly arc-like geochemical signatures and have been derived from a calc-alkaline source. However, a comparison with younger arc sequences (<28 Ma) in the region suggests that the magmatic source turned more tholeiitic in composition with a remarkable increase in the influence of slab-derived fluids, as seen in volcanic rocks from Cura Mallín and Abanico retro and intra-arc basins. It is proposed that the marked geochemical variations between these magmatic periods are related to the tectonic changes associated with the breakup of the Farallon plate at ~28–26 Ma. The geochemical data from Eocene and Oligocene volcanic sequences provide further evidence for the strong link between tectonics and magmatism.


Arc-related rocks Geochemical signature Eocene Oligocene Farallon plate 


  1. Aragón E, D’Eramo F, Castro A, Pinotti L, Brunelli D, Rabbia O, Rivalenti G, Varela R, Spakman W, Demartis M, Cavarozzi CE, Aguilera YE, Mazzucchelli M, Ribot A (2011) Tectono-magmatic response to major convergence changes in the North Patagonian suprasubduction system; the Paleogene subduction–transcurrent plate margin transition. Tectonophysics 509:218–237CrossRefGoogle Scholar
  2. Aragón E, Pinotti L, D’Eramo F, Castro A, Rabbia O, Coniglio J, Demartis M, Hernando I, Cavarozzi CE, Aguilera YE (2013) The Farallon-Aluk ridge collision with South America: Implications for the geochemical changes of slab window magmas from fore to back-arc. Geosci Front 4:377–388CrossRefGoogle Scholar
  3. Bechis F, Encinas A, Concheyro A, Litvak VD, Aguirre Urreta B, Ramos VA (2014) New age constraints for the Cenozoic marine transgressions of northwestern Patagonia, Argentina (41º–43º S): paleogeographic and tectonic implications. J South Am Earth Sci 52:72–93CrossRefGoogle Scholar
  4. Burns WM, Jordan TE, Copeland P, Kelley SA (2006) The case for extensional tectonics in the Oligocene-Miocene Southern Andes as recorded in the Cura Mallín basin (36°–38° S). In: Kay SM, Ramos VA (eds) Evolution of an Andean margin: A tectonic and magmatic view from the Andes to the Neuquén Basin (35°–39° S lat), Geological Society of America, Special Paper 407, pp 163–184.
  5. Cande SC, Leslie RB (1986) Late Cenozoic tectonics of the southern Chile trench. J Geophys Res: Solid Earth 91:471–496CrossRefGoogle Scholar
  6. Cazau L, Mancini D, Cangini J, Spalletti L (1989) Cuenca de Nirihuau. In: Chebli G, Sapalletti L (eds) Cuencas Sedimentarias Argentinas, Serie Correlación Geológica 6. Tucumán, Argentina, pp 299–318Google Scholar
  7. Charrier R, Pinto L, Rodríguez M (2007) Tectonostratigraphic evolution of the Andean orogen in Chile. In: Moreno T, Gibbons W (eds) The geology of Chile. Geological Society, London, pp 21–114Google Scholar
  8. Cobbold PR, Diraison M, Rossello EA (1999) Bitumen veins and Eocene transpression, Neuquén basin, Argentina. Tectonophysics 314:422–442CrossRefGoogle Scholar
  9. Cucchi R, Leanza H (2005) Hoja Geológica 3972-IV Junín de los Andes, provincia del Neuquén. Serv Geo Min Nac 357:1–102Google Scholar
  10. Dalla Salla L, Leguizawjn M, Mazzoni M, Merodlo J, Rapela C, Spalletti L (1981) Características del vulcanismo paleógeno en la Cordillera Nordpatagónica entre las latitudes 39º30′ y 41º20′S. In: VIIIº Congreso Geológico Argentino, San Luis, pp 629–657Google Scholar
  11. Deruelle B (1982) Petrology of the Plio-Quaternary volcanism of the south-central and meridional Andes. J Volcanol Geoth Res 14:77–124CrossRefGoogle Scholar
  12. Encinas A, Folguera A, Oliveros V, Del Mauro LDG, Tapia F, Riffo R, Hervé F, Finger KL, Valencia V, Gianni G, Álvarez O (2015) Late Oligocene–early Miocene submarine volcanism and deep-marine sedimentation in an extensional basin of southern Chile: Implications for the tectonic development of the North Patagonian Andes. Geol Soc Am Bull. Scholar
  13. Fernández Paz L, Litvak VD, Echaurren A, Iannelli SB, Folguera A, Encinas A, Valencia V (2016a) Eocene magmatic evolution of North Patagonian Andes. In: Iº Simposio de Tectónica Sudamericana, Santiago de ChileGoogle Scholar
  14. Fernández Paz L, Iannelli SB, Litvak VD, Echaurren A, Folguera A (2016b) Petrogénesis del volcanismo de la Formación Ventana en el cordón Rivadavia, provincia de Chubut, Andes Nordpatagónicos. In: XIIº Congreso de Mineralogía y Metalogénesis, TucumánGoogle Scholar
  15. Folguera A, Ramos VA (2011) Repeated eastward shifts of arc magmatism in the Southern Andes: A revision to the long-term pattern of Andean uplift and magmatism. J South Am Earth Sci 32:531–546CrossRefGoogle Scholar
  16. Folguera A, Rojas Vera E, Bottessi G, Zamora Valcarce G, Ramos VA (2010) The Loncopué Trough: a Cenozoic basin produced by extension in the southern Central Andes. J Geodyn 49:287–295CrossRefGoogle Scholar
  17. Franzese JR, D’Elia L, Bilmes A, Muravchik M, Hernández M (2011) Superposición de cuencas extensionales y contraccionales oligo-miocenas en el retroarco andino norpatagónico: la Cuenca de Aluminé, Neuquén, Argentina. Andean Geol 38:319–334CrossRefGoogle Scholar
  18. García Morabito E, Ramos VA (2012) Andean evolution of the Aluminé fold and thrust belt, Northern Patagonian Andes (38º30′–40º30′S). J South Am Earth Sci 38:13–30CrossRefGoogle Scholar
  19. Giacosa RE, Alfonso JC, Heredia CN, Paredes J (2005) Tertiary tectonics of the sub-Andean region of the North Patagonian Andes, southern central Andes of Argentina (41º–42º30′S). J South Am Earth Sci 20:157–170CrossRefGoogle Scholar
  20. Gianni G, Navarrete C, Orts D, Tobal J, Folguera A, Giménez M (2015) Patagonian broken foreland and related synorogenic rifting: the origin of the Chubut Group Basin. Tectonophysics 649:81–99CrossRefGoogle Scholar
  21. González Bonorino F (1979) Esquema de la evolución geológica de la Cordillera Norpatagónica. Rev Asoc Geol Argent 34:184–202Google Scholar
  22. González Bonorino F, González Bonorino G (1978) Geología de la región de San Carlos de Bariloche. Rev Asoc Geol Argent 33:175–210Google Scholar
  23. González Díaz E (1979) La edad de la Formación Ventana en el área al norte y al este del lago Nahuel Huapi. Rev Asoc Geol Argent 34:113–124Google Scholar
  24. Goss AR, Kay SM, Mpodozis C (2011) The geochemistry of a dying continental arc: the Incapillo Caldera and Dome Complex of the southernmost Central Andean Volcanic Zone (28º S). Contrib Miner Petrol 161:101–128CrossRefGoogle Scholar
  25. Hickey RL, Frey FA, Gerlach DC, López-Escobar L (1986) Multiple sources for basaltic arc rocks from the southern volcanic zone of the Andes (34°41′S): trace element and isotopic evidence for contributions from subducted oceanic crust, mantle and continental crust. J Geophysical Research 91:5963–5983CrossRefGoogle Scholar
  26. Hildreth W, Morbath S (1988) Crustal contributions to arc magmatism in the Andes of central Chile. Contrib Miner Petrol 98:455–489CrossRefGoogle Scholar
  27. Iannelli S, Fernández Paz L, Ramos M, Litvak VD, Folguera A (2015) Caracterización de la Formación Auca Pan en los alrededores del lago Huechulafquen y cerro Auca Pan, provincia de Neuquén. IIIº Simposio de Petrología Ígnea y Metalogénesis Asociada. Actas, General Roca, pp 80–81Google Scholar
  28. Iannelli SB, Fernández Paz L, Ramos M, Litvak VD, Folguera A (2016a) Geoquímica de la Formación Auca Pan en los alrededores del lago Huechulafquen, provincia de Neuquén. In: XIIº Congreso de Mineralogía y Metalogénesis, Actas 159, TucumánGoogle Scholar
  29. Iannelli SB, Litvak VD, Fernández Paz L, Folguera A, Ramos ME (2016b) Late Paleogene arc-related volcanism in the North Patagonian Andes (39–41º S). In: Iº Simposio de Tectónica Latinoamericana, Santiago de ChileGoogle Scholar
  30. Iannelli SB, Litvak VD, Fernández Paz L, Folguera A, Ramos ME, Ramos V (2017) Evolution of Eocene to Oligocene arc-related volcanism in the North Patagonian Andes (39–41º S), prior to the break-up of the Farallon plate. Tectonophysics 696–697:70–87. Scholar
  31. Jordan T, Burns W, Veiga R, Pángaro F, Copeland P, Kelley S, Mpodozis C (2001) Extension and basin formation in the Southern Andes caused by increased convergence rate: Amid-Cenozoic trigger for the Andes. Tectonics 20:308–324CrossRefGoogle Scholar
  32. Kay RW, Kay SM (1991) Creation and destruction of lower continental crust. Geol Rundsch 80:259–278CrossRefGoogle Scholar
  33. Kay SM, Rapela CW (1987) El volcanismo del Terciario inferior y medio en los Andes Norpatagónicos (40º–42º30′S): Fuente de origen de los magmas y su relación con variaciones en la oblicuidad de la zona de subducción. In: X° Congreso Geológico Argentino, Actas 4, Tucumán, pp 192–194Google Scholar
  34. Kay SM, Godoy E, Kurtz A (2005) Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central Andes. Geol Soc Am 117:67–88CrossRefGoogle Scholar
  35. Kay SM, Burns M, Copeland P (2006) Upper Cretaceous to Holocene magmatism and evidence for transient Miocene shallowing of the Andean subduction zone under the northern Neuquén Basin. In: Kay SM, Ramos VA (eds) Evolution of an Andean margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35–39° S). Geological Society of America, Special Paper 407, pp 19–60Google Scholar
  36. Kay SM, Ardolino AA, Gorring ML, Ramos VA (2007) The Somuncura large igneous province in Patagonia: interaction of a transient mantle thermal anomaly with a subducting slab. J Petrol 48:43–77CrossRefGoogle Scholar
  37. Lara LE (2004) Geología del Volcán Lanín, Región de La Araucanía. Servicio Nacional de Geología y Minería, Carta Geológica de Chile 87:18Google Scholar
  38. Lavenu A, Cembrano J (1999) Compressional- and transpressional-stress pattern for Pliocene and Quaternary brittle deformation in fore arc and intra-arc zones (Andes of Central and Southern Chile). J Struct Geol 21:1669–1691CrossRefGoogle Scholar
  39. Le Maitre RW, Bateman P, Dudek A, Keller J, Lameyre J, Le Bas MJ, Sabine PA, Schmid R, Sorensen H, Streckeisen A, Woolley AR, Zanettin B (1989) A classification of igneous rocks and glossary of terms: recommendations of the international union of geological sciences subcommission on the systematics of igneous rocks. Blackwell Scientific Publications, OxfordGoogle Scholar
  40. Litvak VD, Encinas A, Oliveros V, Bechis F, Folguera A, Ramos VA (2014) El volcanismo mioceno inferior vinculado a las ingresiones marinas en los Andes Nordpatagónicos. XIXº Congreso Geológico Argentino. Actas CD, Córdoba, pp 22–35Google Scholar
  41. Litvak VD, Folguera A, Encinas A, Bechis F, Iannelli SB, Fernández Paz L, Echaurren A, Ramos V, Valencia V (2016) Middle to Late Cenozoic arc magmatism along the Patagonian Andean margin. In Iº Simposio de Tectónica Latinoamericana, Santiago de ChileGoogle Scholar
  42. López-Escobar L, Tagiri M, Vergara M (1991) Geochemical features of southern Andes Quaternary volcanic rocks between 41º50′ and 43º00′S. In: Harmon RS, Rapela CW (eds) Andean magmatism and its tectonic setting: Geological Society of America Special Paper 265, pp 45–56Google Scholar
  43. López-Escobar L, Parada MA, Moreno H, Frey FA, Hickey-Vargas RL (1992) A contribution to the petrogenesis of Osorno and Calbuco volcanoes, Southern Andes (41°00′–41°30′S): comparative study. Andean Geol 19:211–226Google Scholar
  44. López-Escobar L, Cembrano J, Moreno H (1995) Geochemistry and tectonics of the Chilean Southern Andes basaltic Quaternary volcanism (37–46º S). Andean Geol 22:219Google Scholar
  45. Mazzoni MM, Kawashita K, Harrison S, Aragón E (1991) Edades radimétricas eocenas. Borde occidental del macizo Norpatagónico. Rev Asoc Geol Argent 46:150–158Google Scholar
  46. Munizaga F, Hervé F, Drake R, Pankhurst RJ, Brook M, Snelling N (1988) Geochronology of the Lake Region of south-central Chile (39º42′S): preliminary results. J South Am Earth Sci 1:309–316CrossRefGoogle Scholar
  47. Muñoz J, Troncoso R, Duhart P, Crignola P, Farmer L, Stern CR (2000) The relation of the mid-Tertiary coastal magmatic belt in south-central Chile to the late Oligocene increase in plate convergence rate. Revista Geológica de Chile 27:177–203CrossRefGoogle Scholar
  48. Muñoz M, Fuentes F, Vergara M, Aguirre L, Olov Nyström J, Féraud G, Demant A (2006) Abanico East formation: petrology and geochemistry of volcanic rocks behind the Cenozoic arc front in the Andean Cordillera, central Chile (33°50′S). Revista Geológica de Chile 331:109–140Google Scholar
  49. Navarrete CR, Gianni GM, Folguera A (2015) Tectonic inversion events in the western San Jorge Gulf Basin from seismic, borehole and field data. J South Am Earth Sci 64:486–497CrossRefGoogle Scholar
  50. Orts DL, Folguera A, Encinas A, Ramos M, Tobal J, Ramos VA (2012) Tectonic development of the North Patagonian Andes and their related Miocene foreland basin (41º30′–43º S). Tectonics 31:1–24CrossRefGoogle Scholar
  51. Orts DL, Folguera A, Giménez M, Ruiz F, Vera EAR, Klinger FL (2015) Cenozoic building and deformational processes in the North Patagonian Andes. J Geodyn 86:26–41CrossRefGoogle Scholar
  52. Pardo Casas F, Molnar P (1987) Relative motion of the Nazca (Farallon) and South American plates since late Cretaceous time. Tectonics 6:233–248CrossRefGoogle Scholar
  53. Radic JP, Rojas L, Carpinelli A, Zurita E (2002) Evolución tectónica de la cuenca terciaria de Cura-Mallín, región cordillerana chileno argentina (36°30′–39°00′S). In: XVº Congreso Geológico Argentino, Actas 3, Calafate, pp 233–237Google Scholar
  54. Ramos VA (1982) Las ingresiones pacíficas del Terciario en el Norte de la Patagonia. III° Congreso Geológico Chileno. Actas I(A), Concepción, pp 262–288Google Scholar
  55. Ramos ME, Folguera A, Fennell L, Giménez M, Litvak VD, Dzierma Y, Ramos VA (2014) Tectonic evolution of the North Patagonian Andes from field and gravity data (39–40º S). J South Am Earth Sci 51:59–75CrossRefGoogle Scholar
  56. Rapela CW, Spalletti LA, Merodio CJ (1983) Evolución magmática y geotectónica de la “Serie Andesítica” Andina (Paleoceno-Eoceno) en la Cordillera Nordpatagónica. Rev Asoc Geol Argent 38:469–484Google Scholar
  57. Rapela CW, Spalletti L, Merodio J, Aragón E (1984) El vulcanismo paleoceno-eoceno de la provincia andino-patagónica. In: Ramos VA (ed) Geología y Recursos Naturales de la Provincia de Río Negro, Buenos Aires, pp 189–214Google Scholar
  58. Rapela C, Spalletti L, Merodio J, Aragón E (1988) Temporal evolution and spatial variation of early Terciary volcanism in the Patagonian Andes (40º S–42º30′S). J South Am Earth Sci 1:75–88CrossRefGoogle Scholar
  59. Rojas Vera EA, Folguera A, Zamora Valcarce G, Giménez M, Ruiz F, Martínez P, Bottesi G, Ramos VA (2010) Neogene to Quaternary extensional reactivation of a fold and thrust belt: The Agrio belt in the Southern Central Andes and its relation to the Loncopué trough (38º–39º S). Tectonophysics 492:279–294CrossRefGoogle Scholar
  60. Rojas Vera EA, Selles D, Folguera A, Gímenez M, Ruíz F, Orts D, Zamora Valcarce G, Martínez P, Bechis F, Ramos VA (2014) The origin of the Loncopué Trough in the retroarc of the Southern Central Andes from field, geophysical and geochemical data. Tectonophysics 637:1–19CrossRefGoogle Scholar
  61. Somoza R (1998) Updated Nazca (Farallón)-South America relative motions during the last 40 My: implications for mountain building in the central Andean region. J South Am Earth Sci 11:211–215CrossRefGoogle Scholar
  62. Stern CR (1991) Role of subduction erosion in the generation of Andean magmas. Geology 19:78–81CrossRefGoogle Scholar
  63. Thomson SN, Hervé F (2002) New time constraints for the age of metamorphism at the ancestral Pacific Gondwana margin of southern Chile (42º52′S). Rev Geol Chile 29:1–16CrossRefGoogle Scholar
  64. Turner JCM (1973) Descripción geológica de la Hoja 37 a-b, Junín de los Andes, provincia del Neuquén. Serv Geo Min Nac, Boletín 138, Buenos Aires, pp 1–86Google Scholar
  65. Utgé S, Folguera A, Litvak V, Ramos VA (2009) Geología del sector norte de la cuenca de Cura Mallín en las lagunas de Epulaufquen, Neuquén. Rev Asoc Geol Argent 64:231–248Google Scholar
  66. Vattuone ME, Latorre CO (1998) Caracterización geoquímica y edad K/Ar de basaltos del Terciario superior de Aluminé, Neuquén. In: Xº Congreso Latinoamericano de Geología, VIº Congreso Nacional de Geología Económica, Actas 2, Buenos Aires, pp 184–190Google Scholar
  67. Wilf P, Singer BS, Zamaloa MC, Johnson KR, Cúneo NR (2010) Early Eocene 40Ar/39Ar age for the Pampa de Jones plant, frog, and insect biota (Huitrera Formation, Neuquén province, Patagonia, Argentina). Ameghiniana 47:207–216CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sofía B. Iannelli
    • 1
  • Lucía Fernández Paz
    • 1
  • Vanesa D. Litvak
    • 1
  • Rosemary E. Jones
    • 2
  • Miguel E. Ramos
    • 1
  • Andrés Folguera
    • 1
  • Victor A. Ramos
    • 3
  1. 1.Instituto de Estudios Andinos (IDEAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Universidad de Buenos AiresBuenos AiresArgentina
  2. 2.Department of Earth SciencesUniversity of OxfordOxfordUK
  3. 3.Instituto de Estudios Andinos “Don Pablo Groeber”, Departamento de Ciencias Geológicas, FCENUniversidad de Buenos Aires–CONICETBuenos AiresArgentina

Personalised recommendations