Advertisement

Lower Jurassic to Early Paleogene Intraplate Contraction in Central Patagonia

  • César R. Navarrete
  • Guido M. Gianni
  • Andrés Echaurren
  • Andrés Folguera
Chapter
Part of the Springer Earth System Sciences book series (SPRINGEREARTH)

Abstract

Breakup and dispersion stages of Gondwana were ruled by crustal extension. In Patagonia, this regime was associated with the opening of extensional basins from the Jurassic onward, a process that was interrupted by the Andean Orogeny. New data generated from the hydrocarbon exploration allowed identifying Jurassic to Eocene contractional deformations, previously not registered in Central Patagonia. We summarize in this chapter evidence of five compressional events intercalated with the extensional regime that affected Central Patagonia from the Early Jurassic to the Paleogene. These events, denominated “C1,” “C2,” “C3,” “C4,” and “C5,” acted diachronicronously producing tectonic inversion of the Jurassic–Cretaceous depocenters. The first three contractional pulses occurred during the Jurassic, while the two remaining were Late Lower Cretaceous and Early Paleogene. The origin of this compressive activity would be linked to different processes that comprehended from thermal weakening of the crust produced by expansion of the Karoo thermal anomaly in Mid- to Late Jurassic times; the southward continental drift since the Early Jurassic; the ridge push generated by the opening of Weddell Sea since Mid-Jurassic times; and two mid-ocean ridge collisions during the Cretaceous.

Keywords

Jurassic Cretaceous Within-plate contraction South America absolute movement Karoo thermal anomaly Patagonia 

References

  1. Aguirre Urreta MB, Ramos VA (1981) Estratigrafía y paleontología de la alta cuenca de río Roble. Cordillera Patagónica. VIII Congreso Geológico Argentino 101–138Google Scholar
  2. Aguirre-Urreta B, Tunik M, Naipauer M, Pazos P, Ottone E, Fanning M, Ramos VA (2011) Malargüe Group (Maastrichtina-Danian) deposits in the Nuequén Andes, Argentina: implications for the onset of the first Atlantic transgression related to Western Gondwana break-up. Gondwana Res 19: 482–494. doi 10.1016/j.gr.2010.06.008
  3. Allard JO, Giacosa R, Paredes JM (2011) Relaciones estratigráficas entre la Formación los Adobes (Cretácico inferior) y su sustrato Jurásico: implicancias en la evolución tectónica de la cuenca de Cañadón Asfalto, Chubut, Argentina. In: Leanza HA, Franchini M, Impiccini A, Pettinari G, Sigismondi M, Pons J, Tunik M (eds) XVIII Congreso Geológico Argentino: 988–989Google Scholar
  4. Allard J, Foix N, Rodriguez A, Sánchez F (2015) Evolución tectosedimentaria de la Cuenca del Golfo San Jorge en su margen occidental. XVI Reunión de tectónica, Argentina, pp 116–117Google Scholar
  5. Barreda DV (1992) Muricingulisporis chenquensis, una nueva especie de espora de Pteridophyta del Terciario de Patagonia, Argentina. Ameghiniana 29:347–351Google Scholar
  6. Barcat C, Cortiñas JS, Nevistic VA, Zucchi HE (1989) Cuenca Golfo San Jorge. In: Chebli GLS (ed) Cuencas Sedimentarias Argentinas. Serie Correlación Geológica 6:319–345Google Scholar
  7. Blesa A (2004) Geology and mineralization of the Esquel area, Patagonia, Argentina. Msc. Thesis. Colorado School of Mines, BoulderGoogle Scholar
  8. Blisniuk PM, Stern LA, Chamberlain CP, Idleman B, Zeitler PK (2005) Climatic and ecologic changes during Miocene surface uplift in the Southern Patagonian Andes. Earth Planet Sci Lett 230:125–142CrossRefGoogle Scholar
  9. Burov E, Gerya T (2014) Asymmetric three-dimensional topography over mantle plumes. Nature 513:85–103.  https://doi.org/10.1038/nature13703CrossRefGoogle Scholar
  10. Caputo MV (1991) Solimões megashear: intraplate tectonics in northwestern Brazil. Geology 19:246–249CrossRefGoogle Scholar
  11. Caputo MV (2014) Juruá Orogeny: Brazil and Andean Countries. Braz J Geol 44:181–190CrossRefGoogle Scholar
  12. Césari SN, Limarino CO, Llorens M, Passalía MG, Perez Loinaze V, Vera EI (2011) High-precision late Aptian U/Pb age for the Punta del Barco Formation (Baqueró Group), Santa Cruz Province. Argent J South Am Earth Sci 31:426–431CrossRefGoogle Scholar
  13. Chelotti L (1997) Evolución tectónica de la Cuenca del Golfo San Jorge en el Cretácico y Terciario; algunas observaciones desde la interpretación sísmica. Bol Inf Petroleras 49:62–82Google Scholar
  14. Cloetingh S, Burov E, Francois T (2013) Thermo-mechanical controls on intra-plate deformation and the role of plume-folding interactions in continental topography. Gondwana Res 24:815–837.  https://doi.org/10.1016/j.gr.2012.11.012CrossRefGoogle Scholar
  15. Clyde W, Wilf P, Iglesias A, Slingerland R, Barnum T, Bijl P, Bralower T, Brinkhuis H, Comer E, Huber B, Ibañez-Mejia M, Jicha B, Krause J, Schueth J, Singer B, Raigemborn M, Schmitz M, Sluijs A, Zamaloa M (2014) New age constraints for the Salamanca Formation and lower Río Chico Group in the western San Jorge Basin, Patagonia, Argentina: Implications for Cretaceous-Paleogene extinction recovery and land mammal age correlations. Geol Soc Am Bull 126(3/4):289–306.  https://doi.org/10.1130/B30915.1CrossRefGoogle Scholar
  16. Coltice N, Bertrand H, Rey PF, Jourdan F, Phillips BR, Ricard Y (2008) Global warming of the mantle beneath continents back to the Archaean. Gondwana Res 15:254–266.  https://doi.org/10.1016/j.gr.2008.10.001CrossRefGoogle Scholar
  17. Cortés JM (1988) Descripción geológica de la Hoja 46d “Meseta del Canquel” (escala 1:200000), provincia del Chubut, PhD. Thesis, Universidad de Buenos Aires, Buenos Aires, ArgentinaGoogle Scholar
  18. Cortés JM (1990) Estratigrafía de las sucesiones volcano-sedimentarias jurásicas del Chubut central, entre Paso de Indios y El Sombrero. Rev Asoc Geol Argentina 45:69–84Google Scholar
  19. Cúneo R, Ramezani J, Scasso R, Pol D, Escapa I, Zavattieri AM, Bowring SA (2013) High-precision U-Pb geochronology and a new chronostratigraphy for the Cañadón Asfalto Basin, Chubut, central Patagonia: implications for terrestrial faunal and floral evolution in Jurassic. Gondwana Res 24:1267–1275CrossRefGoogle Scholar
  20. Dietz RS, Holden JC (1970) Reconstruction of Pangaea: breakup and dispersion of continents, Permian to present. J Geophys Res 75:4939–4956.  https://doi.org/10.1029/JB075i026p04939CrossRefGoogle Scholar
  21. Dunn RE, Madden RH, Kohn MJ, Schmitz MD, Strömberg CAE, Carlini AA, Ré GH, Crowley J (2013) A new chronology for middle Eocene–early Miocene South American Land Mammal Ages: Geol. Soc. Am. Bull. 125: 539–555.  https://doi.org/10.1130/B30660.1
  22. Echaurren A, Folguera A, Gianni G, Orts D, Tassara A, Encinas A, Giménez M, Valencia V (2016) Tectonic evolution of the North Patagonian Andes (41°–44° S) through recognition of syntectonic strata. Tectonophysics 677–678:99–114.  https://doi.org/10.1016/j.tecto.2016.04.009CrossRefGoogle Scholar
  23. Elliot DH, Fleming TH (2000) Weddell triple junction: the principal focus of Ferrar and Karoo magmatism during initial breakup of Gondwana. Geology 28:539–542. https://doi.org/10.1130/0091-7613(2000)28<539:WTJTPF>2.0.CO;2
  24. Fennell L, Folguera A, Naipauer M, Gianni G, Rojas Vera E, Bottesi G, Ramos V (2015) Creataceous deformation of the southern Central Andes: synorogenic growth strata in the Neuquén Group (35°30′–37° S). Basin Res 1–22.  https://doi.org/10.1111/bre.12135
  25. Ferello R, Lesta P (1973) Acerca de la existencia de una dorsal interior en el sector central de la Serranía de San Bernardo (Chubut). V Congreso Geológico Argentino 19–26Google Scholar
  26. Fernández Garrasino CA (1977) Contribución a la estratigrafía de la zona comprendida entre Estancia Ferraroti, Cerro Colorado y Cerrito Negro, Departamento de Tehuelches, provincia de Chubut. Argent Rev Asoc Geol Argent 32:130–144Google Scholar
  27. Feruglio E (1949) Descripción Geológica de la Patagonia. Dirección General de Yacimientos Petrolíferos Fiscales, Editorial ConiGoogle Scholar
  28. Figari E (2005) Evolución tectónica de la cuenca de Cañadón Asfalto (zona del Valle Medio del Rio Chubut). PhD. Thesis, Universidad Nacional de Buenos Aires. Buenos Aires, ArgentinaGoogle Scholar
  29. Fitzgerald MG, Mitchum RM Jr, Uliana MA, Biddle KT (1990) Evolution of the San Jorge Basin. Argent Am Assoc Petr Geol Bull 74:879–920Google Scholar
  30. Fleagle JG, Bown TM, Swisher III CC, Buckley G (1995) Ages of the Pinturas and Santa Cruz formations. VI Congreso Argentino de Paleontología y Bioestratigrafía 129–135Google Scholar
  31. Folguera A, Iannizzotto NF (2004) The lagos La Plata and Fontana fold-and-thrust belt: long-lived orogenesis at the edge of western Patagonia. J South Am Earth Sci 16:541–566Google Scholar
  32. Franchi M, Panza JL, de Barrio RR (1989) Depósitos triásicos y jurásicos de la Patagonia Extraandina. In: Chebli G, Spaletti L (eds) Cuencas Sedimentarias Argentinas. Universidad Nacional de Tucumán, Serie de Correlación Geológica, pp 347–378Google Scholar
  33. Franke D (2013) Rifting lithosphere breakup and volcanism: comparison of magma-poor and volcanic rifted margins. Mar Petr Geol 43:63–87.  https://doi.org/10.1016/j.marpetgeo.2012.11.003CrossRefGoogle Scholar
  34. Frizon de Lamotte D, Fourdan B, Leleu S, Leparmentier F, Clarens P (2015) Style of rifting and the stages of Pangea breakup. Tectonics 34:1009–1029.  https://doi.org/10.1002/2014TC003760CrossRefGoogle Scholar
  35. Genise JF, Sciutto JC, Laza JH, González MG, Bellosi ES (2002) Fossil bee nests, coleopteral pupal chambers and tuffaceous paleosols from the Late Cretaceous Laguna Palacios Formation, Central Patagonia (Argentina). Palaeogeogr Palaeocl 177:215–235.  https://doi.org/10.1016/S0031-0182(01)00333-9CrossRefGoogle Scholar
  36. Geuna SE, Somoza R, Vizán H, Figari E, Rinaldi CA (2000) Paleomagnetism of Jurassic and Cretaceous rocks in central Patagonia: a key to constrain the timing of rotations during the breakup of southwestern Gondwana? Earth Planet Sci Lett 181:145–160.  https://doi.org/10.1016/S0012-821X(00)00198-9CrossRefGoogle Scholar
  37. Ghiglione M, Ramos V, Cuitiño J, Barberón V (2016) Growth of the southern Patagonian andes (46–53° S) and their relation to subduction processes. In: Folguera A, Naipauer M, Sagripanti L, Ghiglione M, Orts D, Giambiagi L (eds) Growth to the andes. Springer Earth Sys Sci 201–240Google Scholar
  38. Gianni G, Navarrete C, Orts D, Tobal J, Folguera A, Giménez M (2015a) Patagonian broken foreland and related synorogenic rifting: the origin of the Chubut Group Basin. Tectonophysics 649:81–99.  https://doi.org/10.1016/j.tecto.2015.03.006CrossRefGoogle Scholar
  39. Gianni G, Navarrete C, Folguera A (2015b) Synorogenic foreland rifts and transtensional basins: a review of Andean imprints on the evolution of the San Jorge Gulf, Salta Group and Taubaté Basins. J South Am Earth Sci 64:288–306.  https://doi.org/10.1016/j.jsames.2015.08.004CrossRefGoogle Scholar
  40. Golonka J, Bocharova NY (2000) Hot spot activity and the break-up of Pangea. Palaeogeogr Palaeocl 161:49–69.  https://doi.org/10.1016/S0031-0182(00)00117-6CrossRefGoogle Scholar
  41. Granot R, Dyment J (2015) The Cretaceous opening of the South Atlantic Ocean. Earth Planet Sci Lett 414:156–163.  https://doi.org/10.1016/j.epsl.2015.01.015CrossRefGoogle Scholar
  42. Hastie WW, Watkeys MK, Aubourg C (2014) Magma flow in dyke swarms of the Karoo LIP: implications for the mantle plume hypothesis. Gondwana Res 25:736–755.  https://doi.org/10.1016/j.gr.2013.08.010CrossRefGoogle Scholar
  43. Herbst R (1965) La flora fósil de la Formación Roca Blanca, provincia de Santa Cruz, Patagonia, vol 12. Opera Lilloana, Instituto Miguel Lillo, Tucumán, Argentina, pp 7–16Google Scholar
  44. Herbst R (1966) La flora liásica del Grupo Pampa de Agnia, Chubut, Patagonia. Ameghiniana 4:337–349Google Scholar
  45. Herbst R (1968) Las floras Liásicas Argentinas con consideraciones estratigráficas. III Jornadas Geológicas Argentinas, Comodoro Rivadavia, Argentina, pp 145–162Google Scholar
  46. Homovc J, Conforto G, Lafourcade P, Chelotti L (1995) Fold Belt in the San Jorge Basin, Argentina: an example of Tectonic inversion. In: Buchanan J, Buchanan P (eds) Basin inversion. Special Publications, Geol. Soc, pp 235–248Google Scholar
  47. Homovc JF, Constantini LA (2001) Hydrocarbon exploration potential within intraplate shear-related depocenters, Deseado and San Julián basins, southern Argentina. Am Assoc Petr Geol Bull 85:1795–1816Google Scholar
  48. Homovc J, Navarrete C, Marshall P, Masquere S, Cerdan J (2011) Inversión tectónica intra-cretácica de la Subcuenca de Río Mayo, Chubut, Argentina. XVIII Congreso Geológico Argentino, 1418–1419Google Scholar
  49. Jokat W, Boebel T, König M, Meyer U (2003) Timing and geometry of lower Gondwana breakup. J Geophys Res 108(B9):2428.  https://doi.org/10.1029/2002JB001802CrossRefGoogle Scholar
  50. Jourdan F, Féraud G, Bertrand H, Kampunzu AB, Tshoso G, Watkeys MK, Le Gall B (2005) Karoo large igneous province: Brevity, origin, and relation to mass extinction questioned by new 40Ar/39Ar age data. Geology 33:745–748.  https://doi.org/10.1130/G21632.1CrossRefGoogle Scholar
  51. Leanza HA (2009) Las principales discordancias del Mesozoico de la Cuenca Neuquina según observaciones de superficie. Rev Mus Arg Cienc Nat, n.s 11: 145–184. Buenos AiresGoogle Scholar
  52. Lesta PJ (1968) Estratigrafía de la Cuenca del Golfo San Jorge. III Jornadas Geológicas Argentinas, Buenos Aires, pp 251–289Google Scholar
  53. Lesta P, Ferello R (1972) Región Extraandina de Chubut y Norte de Santa Cruz. In: Leanza A (ed) Geología Regional Argentina, Academia Nacional de Ciencias: 602–687Google Scholar
  54. Lesta P, Ferello R, Chebli G (1980) Chubut extraandino. In: Turner JC (ed) II Simposio de Geología Regional Argentina. Academia Nacional de Ciencias, Córdoba, pp 1307–1387Google Scholar
  55. Perez Loinaze V, Vera E, Passalia M, Llorens M, Friedman R, Limarino C, Césari S (2013) High-precision U/Pb zircon age from the Anfiteatro de Ticó Formation: implications for the timing of the lower angiosperm diversification in Patagonia. J Soth Am Earth Sci 48:97–105. doi 10.1016/j.jsames.2013.08.005
  56. Maloney KT, Clarke GL, Klepeis KA, Quevedo L (2013) The late jurassic to present evolution of the Andean margin: drivers and the geological record. Tectonics 32:1049–1065.  https://doi.org/10.1002/tect.20067CrossRefGoogle Scholar
  57. Malumián N, Ploszkiewicz JV (1976) El Liásico fosilífero de Loncopán, Departamento Tehuelches, Provincia del Chubut. República Argent Rev Asoc Geol Argent 31:279–280Google Scholar
  58. Márquez MJ (2003) Las rocas volcano-sedimentarias liásicas en el cordón Esquel, Chubut, Argentina. I Simposio Argentino del Jurásico: 11–11Google Scholar
  59. Márquez M, Navarrete C (2011) La tectónica compresiva pre-Aptiana-Albiana en la sierra de Pichiñanes, Chubut, Argentina. XVIII Congreso Geológico Argentino, 105–106Google Scholar
  60. Márquez M, Navarrete C (2015) Deformaciones contraccionales previas al Cretácico Superior en la Patagonia Central Argentina. XVI Reunión de Tectónica, Argentina, pp 140–141Google Scholar
  61. Márquez M, Zubia M, Giacosa R, Trevisol S,Fernández M (2016) Características geológicas y metalogenéticas del Depósito Navidad (Ag–Pb–Zn–C) Macizo Somún Curá, Chubut, Argentina. Instituto de Recursos Geológicos Mineros, Servicio Geológico Minero Argentino. Boletín N°40, 50 ppGoogle Scholar
  62. Mazzoni MM (1985) La Formación Sarmiento y el volcanismo paleógeno. Rev Asoc Geol Argent 40:60–68Google Scholar
  63. Mazzoni MM, Kawashita K, Harrison S, Aragón E (1991) Edades radimétricas eocenas en el borde occidental del Macizo Norpatagónico. Rev Asoc Geol Argent 46(1–2):150–158Google Scholar
  64. Mosquera A, Ramos VA (2006) Intraplate deformation in the Neuquén Embayment. In: Kay SM, Ramos VA (eds) Evolution of an Andean margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35°–39° S lat). Geol Soc Am Spec Pap 407:97–123.  https://doi.org/10.1130/2006.2407(05)
  65. Mpodozis C, Ramos VA (2008) Tectónica jurásica en Argentina y Chile: extensión, subducción oblicua, rifting, deriva y colisiones? Rev Asoc Geol Argent 63:481–497Google Scholar
  66. Müller DR, Seton M, Zahirovic S, Williams SE, Matthews KJ, Wright NM, Shephard GE, Maloney KT, Barnett-Moore N, Hosseinpour M, Bower DJ, Cannon J (2016) Ocean basin evolution and global-scale plate reorganization events since Pangea breakup. Annu Rev Earth Planet Sci 44:107–138.  https://doi.org/10.1146/annurev-earth-060115-012211
  67. Murphy JB, Nance RD (2013) Speculations on the mechanisms for the formation and breakup of supercontinents. Geosci Front 4: 85–194. doi:  https://doi.org/10.1016/j.gsf.2012.07.005
  68. Naipauer M, García E, Marques J, Tunik M, Rojas Vera E, Vujovich G, Pimentel M, Ramos V (2012) Intraplate Late Jurassic deformation and exhumation in western central Argentina: Constraints from surface data and U-Pb detrital zircon ages. Tectonophysics 524–525:59–75.  https://doi.org/10.1016/j.tecto.2011.12.017CrossRefGoogle Scholar
  69. Nakayama C (1973) Sedimentitas prebajocianas en el extremo austral de la sierra de Taquetrén, Chubut, Argentina. V Congreso Geológico Argentino, 269–278Google Scholar
  70. Navarrete CR, Gianni GM, Folguera A (2015) Tectonic inversión events in the western San Jorge Gulf Basin from seismic borehole and field data. J South Am Earth Sci 64:486–497.  https://doi.org/10.1016/j.jsames.2015.09.012CrossRefGoogle Scholar
  71. Navarrete C, Gianni G, Echaurren A, Kingler F, Folguera A (2016) Episodic Jurassic to lower Cretaceous intraplate compression in Central Patagonia during Gondwana breakup. J Geodyn 102C:185–201.  https://doi.org/10.1016/j.jog.2016.10.001CrossRefGoogle Scholar
  72. Navarro EL, Astini RA, Belousova E, Guler MV, Gehrels G (2015) Detrital zircon geochronology and provenance of the Chubut Group in the northeast of Patagonia. Argent J South Am Earth Sci 63:149–161CrossRefGoogle Scholar
  73. Nürnberg D, Müller DR (1991) The tectonic evolution of the South Atlantic from Late Jurassic to present. Tectonophysics 191:27–53.  https://doi.org/10.1016/0040-1951(91)90231-GCrossRefGoogle Scholar
  74. Orts DL, Folguera A, Encinas A, Ramos M, Tobal J, Ramos VA (2012) Tectonic development of the North Patagonian Andes and their related Miocene foreland basin (41°30′–43° S). Tectonics 31(TC3012):1–24.  https://doi.org/10.1029/2011TC003084Google Scholar
  75. Pankhurst RJ, Rapela CW, Márquez MJ (1993) Geocronología y petrogénesis de los granitoides Jurásicos del noroeste del Macizo del Deseado. XII Congreso Geológico Argentina 4:134–141Google Scholar
  76. Pankhurst RJ, Rapela CW (1995) Production of Jurassic rhyolite by anatexis of the lower crust of Patagonia. Earth Planet Sci Lett 134:23–36.  https://doi.org/10.1016/0012-821X(95)00103-JCrossRefGoogle Scholar
  77. Pankhurst RJ, Leat PT, Sruoga P, Rapela CW, Márquez M, Storey BC, Riley TR (1998) The Chon Aike province of Patagonia and related rocks in West Antarctica: a silicic large igneous province. J Volc Geoth Res 81:113–136.  https://doi.org/10.1016/S0377-0273(97)00070-XCrossRefGoogle Scholar
  78. Pankhurst RJ, Riley TR, Fanning CM, Kelley S (2000) Episodic silicic volcanism in Patagonia and the Antarctic Peninsula: Chronology of magmatism associated with the break-up of Gondwana. J Petrol 41:605–625.  https://doi.org/10.1093/petrology/41.5.605CrossRefGoogle Scholar
  79. Pankhurst RJ, Hervé F, Fanning M, Suárez M (2003) Coeval plutonic and volcanic activity in the Patagonian Andes: the Patagonian Batholith and the Ibáñez and Divisadero formations, Aysén, southern Chile. X Congreso Geológico Chileno, Electronic filesGoogle Scholar
  80. Paredes JM, Azpiroz G, Foix N (2006) Tertiary tectonics and sedimentation in the Cerro Piedra Oil Field Golfo San Jorge basin, Argentina. IV Latin American Congress of Sedimentology, San Carlos de Bariloche, Argentina, 163Google Scholar
  81. Paredes JM, Foix N, Colombo F, Nillni A, Allard JO, Marquillas R (2007) Volcanic and climatic control on fluvial style in a high energy system: the Lower Cretaceous Matasiete Formation, Golfo San Jorge basin, Argentina. Sed Geol 202:96–123CrossRefGoogle Scholar
  82. Paredes JM, Plazibat S, Crovetto C, Stein J, Cayo E, Schiuma A (2013) Fault kinematics and depocenter evolution of oil-bearing, continental successions of the Mina del Carmen Formation (Albian) in the Golfo San Jorge basin. Argent J South Am Earth Sci 46:63–79.  https://doi.org/10.1016/j.jsames.2013.05.002CrossRefGoogle Scholar
  83. Peroni GO, Hegedus AG, Cerdan J, Legarreta L, Uliana MA (1995) Hydrocarbon Accumulation in an inverted segment of the Andean Foreland: San Bernardo Belt, Central Patagonia. In: Tankard AJ, Suárez R, Welsink HJ (eds) Petroleum basins of South America, 403–419Google Scholar
  84. Pesce AH (1979) Estratigrafía de la Cordillera Patagónica entre los paralelos 43°30′ y 44° de latitud sur y sus áreas mineralizadas, provincia de Chubut. VII Congreso Geológico Argentino, 257–270Google Scholar
  85. Ploszkiewicz J (1987) Descripción Geológica Hoja 47c, Apeleg. Dirección Nacional de Geología y Minería, Boletín 204, 95 ppGoogle Scholar
  86. Raigemborn MS, Krause JM, Bellosi E, Matheos SD (2010) Redefinición estratigráfica del grupo Río Chico (Paleógeno Inferior), en el norte de la Cuenca del Golfo San Jorge. Chubut Rev Asoc Geol Argent 67:239–256Google Scholar
  87. Ramos VA (1999) Los depósitos sinorogénicos terciarios de la Región Andina. Instituto de Geología y Recursos Minerales. Geología Argent Anales 29:651–682Google Scholar
  88. Ranalli JN, Peroni GO, Boggetti DA, Manoni R (2011) Cuenca Cañadón Asfalto. Modelo tectosedimentario. VIII Congreso de Exploración y Desarrollo de Hidrocarburos, Simposio Cuencas Sedimentarias Argentinas: visión actual, 185–215Google Scholar
  89. Rapela CW, Spalletti LA, Merodio JC, Aragón E (1988) Temporal evolution and spatial variation of early Tertiary volcanism in the Patagonian Andes (40 S–42 30′ S). J South Am Earth Sci 1:75–88CrossRefGoogle Scholar
  90. Rapela CW, Pankhurst RJ, Fanning CM, Hervé F (2005) Pacific subduction coeval with the Karoo mantle plume: the Lower Jurassic Subcordilleran belt of northwestern Patagonia. In: Vaughan APM, Leat PT, Pankhurst RJ (eds) Terrane processes at the margins of Gondwana. Geol Soc Lond Spec Publ 246:217–239Google Scholar
  91. Reimer W, Miller H, Mehl H (1996) Mesozoic and Cenozoic palaeo-stress field of the South Patagonian Massif deduced from structural and remote sensing data. In: Storey BC, King EC, Livermore RA (eds) Weddell sea tectonics and Gondwana break-up. Geol Soc Lond Spec Publ 108:73–85.  https://doi.org/10.1144/GSL.SP.1996.108.01.06
  92. Riley TR, Leat PT, Pankhurst RJ, Harris C (2001) Origins of large volume rhyolitic volcanism in the Antarctic Peninsula and Patagonia by crustal melting. J Petrol 42:1043–1065.  https://doi.org/10.1093/petrology/42.6.1043CrossRefGoogle Scholar
  93. Riley TR, Knight KB (2001) Age of pre-break-up Gondwana magmatism. Antarct Sci 13:99–110.  https://doi.org/10.1017/S0954102001000177CrossRefGoogle Scholar
  94. Robbiano JA (1971) Contribución al conocimiento estratigráfico de la Sierra del Cerro Negro, Pampa de Agnia, provincia del Chubut. República Argent Rev Asoc Geol Argent 26:41–56Google Scholar
  95. Rodriguez JF, Littke R (2001) Petroleum generation and accumulation in the Golfo San Jorge Basin, Argentina: a basin modeling study. Mar Pet Geol 18:995–1028CrossRefGoogle Scholar
  96. Rolando AP, Hartmann LA, Santos JOS, Fernandez RR, Etcheverry RO, Schalamuk IA, McNaughton NJ (2002) SHRIMP zircon U-Pb evidence for extended Mesozoic magmatism in the Patagonian Batholith and assimilation of Archean crustal components. J South Am Earth Sci 15:267–283Google Scholar
  97. Rolando AP, Hartmann LA, Santos JO, Fernández RR, Etcheverry RO, Schalamuk IBA, McNaughton NJ (2004) SHRIMP UPb zircon dates from igneous rocks from Fontana Lake region, Patagonia: Implications for the age of magmatism, Mesozoic geological evolution and age of basement. Rev Asoc Geol Argent 59:671–684Google Scholar
  98. Sesana F (1968) Rasgos petrológicos de la comarca de Río Chico, Río Negro. III Jornadas Geológicas Argentinas, Comodoro Rivadavia, pp 99–107Google Scholar
  99. Seton M, Müller RD, Zahirovic S, Gaina C, Torsvik T, Shephard G, Talsma A, Gurnis M, Turner M, Maus S, Chandler M (2012) Global continental and ocean basin reconstructions since 200 Ma. Earth Sci Rev 113:212–270CrossRefGoogle Scholar
  100. Sciutto JC (1981) Geología del Codo del Río Senguer, Chubut, Argentina. VIII Congreso Geológico Argentino, 544–568Google Scholar
  101. Simpson GG (1941) The Eogene of Patagonia. Am Mus Novit 1120:1–15Google Scholar
  102. Somoza R (1994) South American reference pole for the mid-Cretaceous: further constraints in the interpretation of Andean paleomagnetic data. Geology 22:933–936. https://doi.org/10.1130/0091-7613(1994)-022<0933:SARPFT>2.3.CO;2CrossRefGoogle Scholar
  103. Somoza R, Zaffarana CB (2008) Mid Cretaceous polar standstill of South America, motion of the Atlantic hotspots and the birth of the Andean cordillera. Earth Planet Sci Lett 271:267–277CrossRefGoogle Scholar
  104. Storey BC, Alabaster T, Hole MJ, Pankhurst RJ, Wever E (1992) Role of subduction-plate boundary forces during the initial stages of Gondwana break-up: evidence from the proto-Pacific margin of Antartica. In: Storey BC, Alabaster T, Pankhurst RJ (eds) Magmatism and the causes of continental break-up. Geol Soc Spec Publ 68:149–163.  https://doi.org/10.1144/GSL.SP.1992.068.01.10
  105. Suárez M, De la Cruz R (2000) Tectonics in the eastern Patagonian Cordillera (45°30–47°30). J Geol Soc 15:995–1001CrossRefGoogle Scholar
  106. Suárez M, Márquez M (2007) A toarcian back-arc basin of Central Patagonia (Chubut), Argentina: Middle Jurassic closure, arc migration and tectonic setting. Rev Geol de Chile 34:63–79.  https://doi.org/10.4067/S0716-02082007000100004CrossRefGoogle Scholar
  107. Suárez M, De La Cruz R, Bell M, Demant A (2009a) Cretaceous slab segmentation in southwestern Gondwana. Geol Mag 147(1):1–13Google Scholar
  108. Suárez M, Márquez M, De La Cruz R, Fanning M (2009b) Aptian–Albian subaerial volcanic rocks in Central Patagonia: Divisadero and Chubut Groups. XII Congreso Geológico Chileno, 1–4Google Scholar
  109. Suárez M, Márquez M, De La Cruz R, Navarrete C, Fanning M (2014) Cenomanian-? Lower Turonian minimum age of the Chubut Group, Argentina: SHRIMP U-Pb geochronology. J South Am Earth Sci 50:67–74.  https://doi.org/10.1016/j.jsames.2013.10.008CrossRefGoogle Scholar
  110. Turner JCM (1975) Descripción Geológica de la Hoja 44d “Languiñeo”, provincia de Chubut. Servicio Geológico Nacional (unpublished), ArgentinaGoogle Scholar
  111. Umazano AM, Bellosi ES, Visconti G, Melchor RN (2012) Detecting allocyclic signals in volcaniclastic fluvial successions: facies, architecture and stacking pattern from the Cretaceous of Central Patagonia. Argent J South Am Earth Sci 40:94–115.  https://doi.org/10.1016/j.jsames.2012.09.005CrossRefGoogle Scholar
  112. Varela R, Pezzuchi HD, Genini AD, Zubia MA (1991) Dataciones en el Jurásico de rocas magmáticas del nordeste del Macizo del Deseado. Santa Cruz Rev Asoc Geol Argent 46:257–262Google Scholar
  113. Vaughan APM, Livermore RA (2005) Episodicity of Mesozoic terrane accretion along the Pacific margin of Gondwana: implications for superplume–plate interactions. In: Vaughan APM, Leat PT, Pankhurst RJ (eds) Terrane processes at the margins of Gondwana. J Geol Soc Spec Publ 246:143–178.  https://doi.org/10.1144/GSL.SP.2005.246.01.05
  114. Veevers JJ (2004) Gondwanaland from 600.570 Ma assembly through 320 Ma merger in Pangea to 160 Ma breakup: supercontinental tectonics via stratigraphy and radiometric dating. Earth-Sci Rev 68:1–132.  https://doi.org/10.1016/j.earscirev.2004.05.002
  115. Volkheimer W (1964) Estratigrafía de la zona extraandina del Departamento de Cushamen (Chubut) entre los paralelos 42° y 42°30´y los meridianos 70° y 71°. Rev Asoc Geol Argent 19:85–107Google Scholar
  116. Volkheimer W, Gallego O, Cabaleri N, Armella C, Narváez P, Silva Nieto D, Páez M (2009) Stratigraphy, palynology, and conchostracans of a Lower Cretaceous sequence at the Cañadón Calcáreo locality, Extra-Andean central Patagonia: age and palaeoenviroment significance. Cretac Res 30:270–282.  https://doi.org/10.1016/j.cretres.2008.07.010
  117. Whalen L, Gazel E, Vidito C, Puffer J, Bizimis M, Henika W, Caddick MJ (2015) Supercontinental inheritance and its influence on supercontinental breakup: The Central Atlantic Magmatic Province and the breakup of Pangea. Geochem Geophys Geosyst 16:3532–3554.  https://doi.org/10.1002/2015GC005885CrossRefGoogle Scholar
  118. Zaffarana CB, Somoza R (2012) Palaeomagnetism and 40Ar/39Ar dating from Lower Jurassic rocks in Gastre, central Patagonia: further data to explore tectonomagmatic events associated with the break-up of Gondwana. J Geol Soc 169:371–379.  https://doi.org/10.1144/0016-76492011-089CrossRefGoogle Scholar
  119. Zaffarana CB, Somoza R, López de Luchi M (2014) The late triassic central Patagonian batholith: magma hybridization, 40Ar/39Ar ages and thermobarometry. J South Am Earth Sci 55:94–122.  https://doi.org/10.1016/j.jsames.2014.06.006CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • César R. Navarrete
    • 1
  • Guido M. Gianni
    • 2
    • 3
  • Andrés Echaurren
    • 4
  • Andrés Folguera
    • 5
  1. 1.Departamento de GeologíaUniversidad Nacional de la Patagonia San Juan BoscoComodoro RivadaviaArgentina
  2. 2.Instituto Geofísico Sismológico Ing. Volponi (IGSV)Universidad de Nacional San JuanSan JuanArgentina
  3. 3.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  4. 4.Instituto de Estudios Andinos Don Pablo Groeber, UBA—CONICET. Departamento de Ciencias Geológicas, FCENUniversidad de Buenos AiresBuenos AiresArgentina
  5. 5.Instituto de Estudios Andinos (IDEAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Universidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations