Skip to main content

The Delay Monad and Restriction Categories

  • Conference paper
  • First Online:
Theoretical Aspects of Computing – ICTAC 2017 (ICTAC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10580))

Included in the following conference series:

Abstract

We continue the study of Capretta’s delay monad as a means of introducing non-termination from iteration into Martin-Löf type theory. In particular, we explain in what sense this monad provides a canonical solution. We discuss a class of monads that we call \(\omega \)-complete pointed classifying monads. These are monads whose Kleisli category is an \(\omega \)-complete pointed restriction category where pure maps are total. All such monads support non-termination from iteration: this is because restriction categories are a general framework for partiality; the presence of an \(\omega \)-join operation on homsets equips a restriction category with a uniform iteration operator. We show that the delay monad, when quotiented by weak bisimilarity, is the initial \(\omega \)-complete pointed classifying monad in our type-theoretic setting. This universal property singles it out from among other examples of such monads.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(\mathsf {C}\) is typed \(\mathcal {U}_1 \rightarrow \mathcal {U}_1\), so it is an endofunctor on \(\mathbf {Set}_1\). But as the other examples can be replayed for any \(\mathcal {U}_k\), comparing this example to them is unproblematic.

References

  1. Altenkirch, T., Danielsson, N.A., Kraus, N.: Partiality, revisited: the partiality monad as a quotient inductive-inductive type. In: Esparza, J., Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol. 10203, pp. 534–549. Springer, Heidelberg (2017). doi:10.1007/978-3-662-54458-7_31

    Chapter  Google Scholar 

  2. Benton, N., Kennedy, A., Varming, C.: Some domain theory and denotational semantics in Coq. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 115–130. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03359-9_10

    Chapter  Google Scholar 

  3. Bucalo, A., Führmann, C., Simpson, A.: An equational notion of lifting monad. Theor. Comput. Sci. 294(1–2), 31–60 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Capretta, V.: General recursion via coinductive types. Log. Methods Comput. Sci. 1(2), article 1 (2005)

    Google Scholar 

  5. Chapman, J., Uustalu, T., Veltri, N.: Quotienting the delay monad by weak bisimilarity. Math. Struct. Comput. Sci. (to appear)

    Google Scholar 

  6. Cockett, J.R.B., Guo, X.: Join restriction categories and the importance of being adhesive. Abstract of talk presented at CT 2007 (2007)

    Google Scholar 

  7. Cockett, J.R.B., Lack, S.: Restriction categories I: categories of partial maps. Theor. Comput. Sci. 270(1–2), 223–259 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cockett, J.R.B., Lack, S.: Restriction categories II: partial map classification. Theor. Comput. Sci. 294(1–2), 61–102 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cockett, J.R.B., Lack, S.: Restriction categories III: colimits, partial limits, and extensivity. Math. Struct. Comput. Sci. 17(4), 775–817 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Danielsson, N.A.: Operational semantics using the partiality monad. In: Proceedings of 17th ACM SIGPLAN International Conference on Functional Programming, ICFP 2012, pp. 127–138. ACM, New York (2012)

    Google Scholar 

  11. Ésik, Z., Goncharov, S.: Some remarks on Conway and iteration theories. arXiv preprint arXiv:1603.00838 (2016)

  12. Goncharov, S., Rauch, C., Schröder, L.: Unguarded recursion on coinductive resumptions. Electron. Notes Theor. Comput. Sci. 319, 183–198 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Guo, X.: Products, joins, meets, and ranges in restriction categories. Ph.D. thesis, University of Calgary (2012)

    Google Scholar 

  14. Hofmann, M.: Extensional Constructs in Intensional Type Theory. CPHS/BCS Distinguished Dissertations. Springer, London (1997). doi:10.1007/978-1-4471-0963-1

    Book  Google Scholar 

  15. Mulry, P.S.: Partial map classifiers and partial cartesian closed categories. Theor. Comput. Sci. 136(1), 109–123 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Norell, U.: Dependently typed programming in Agda. In: Koopman, P., Plasmeijer, R., Swierstra, D. (eds.) AFP 2008. LNCS, vol. 5832, pp. 230–266. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04652-0_5

    Chapter  Google Scholar 

  17. Robinson, E., Rosolini, G.: Categories of partial maps. Inf. Comput. 79(2), 95–130 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rosolini, G.: Continuity and effectiveness in topoi. DPhil. thesis, University of Oxford (1986)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Estonian Ministry of Education and Research institutional research grant IUT33-13 and the Estonian Research Council personal research grant PUT763.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niccolò Veltri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Uustalu, T., Veltri, N. (2017). The Delay Monad and Restriction Categories. In: Hung, D., Kapur, D. (eds) Theoretical Aspects of Computing – ICTAC 2017. ICTAC 2017. Lecture Notes in Computer Science(), vol 10580. Springer, Cham. https://doi.org/10.1007/978-3-319-67729-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67729-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67728-6

  • Online ISBN: 978-3-319-67729-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics