Micro-NMR on CMOS for Biomolecular Sensing

  • Ka-Meng Lei
  • Nan SunEmail author
  • Pui-In MakEmail author
  • Rui Paulo Martins
  • Donhee HamEmail author


In this chapter, we reported several portable nuclear magnetic resonance (NMR) systems implemented with silicon integrated circuits (IC). Being the initial researchers in the NMR on IC field, we firstly proposed to integrate the complex NMR electronics with the customized IC for portable NMR application with a palm size magnet. Moreover, to manage the samples inside the narrow opening of the portable magnet, we proposed the integration of the digital microfluidic device with the portable NMR system to attain electronic-automated multi-sample management scheme. With the capacitive sensing module of the droplets, the samples can be guided to the NMR sensing site sequentially to reduce labor and experimental time, which facilitates the detection and supports high-throughput sensing. Lastly, we demonstrates a NMR system with magnetic field calibration. This calibration culminates in a robust NMR sensing scheme by modulating the actual magnetic field to a steady value. Thus, the Larmor frequency can be stabilized, and the NMR sensing can work at different environment.


Nuclear magnetic resonance (NMR) Radio-frequency (RF) integrated circuits CMOS Biomolecular sensing Sample management B-field calibration 



K.-M. Lei, P.-I. Mak, and R. Martins acknowledge the support from Macau FDCT – 047/2014/A1. N. Sun acknowledges NSF Grant No. 1254459. D. Ham acknowledges the STC Center for Integrated Quantum Materials, NSF Grant No. DMR-1231319.


  1. 1.
    M.A. Brown, R.C. Semelka, MRI: Basic Principles and Applications, 4th edn. (Wiley-Blackwell, 2010)Google Scholar
  2. 2.
    D. Canet, Nuclear Magnetic Resonance: Concepts and Methods (Wiley, New York, 1996)Google Scholar
  3. 3.
    H. Gunther, NMR Spectroscopy: Basic Principles, Concepts, and Applications in Chemistry (Weinheim, Germany, 1995)Google Scholar
  4. 4.
    H. Lee, E. Sun, D. Ham, R. Weissleder, Chip-NMR biosensor for detection and molecular analysis of cells. Nat. Med. 14(8), 869–874 (2008)CrossRefGoogle Scholar
  5. 5.
    J.M. Perez, L. Josephson, T. O’Loughlin, D. Hogemann, R. Weissleder, Magnetic relaxation switches capable of sensing molecular interactions. Nat. Biotechnol. 20(8), 816–820 (2002)CrossRefGoogle Scholar
  6. 6.
    J.A. Slichter, Principles of Magnetic Resonance (Springer, Heidelberg, 1990)CrossRefGoogle Scholar
  7. 7.
    K.-M. Lei, H. Heidari, P.-I. Mak, M.-K. Law, F. Maloberti, R.P. Martins, A handheld high-sensitivity micro-NMR CMOS platform with B-field stabilization for multi-type biological/chemical assays. IEEE J. Solid State Circuits 52(1), 284–297 (2017)CrossRefGoogle Scholar
  8. 8.
    K.-M. Lei, H. Heidari, P.-I. Mak, M.-K. Law, F. Maloberti, R.P. Martins, A handheld 50pM-sensitivity micro-NMR CMOS platform with B-field stabilization for multi-type biological/chemical assays, in 2016 IEEE International Solid-State Circuits Conference (ISSCC) (2016b), pp. 474–475, Feb 2016Google Scholar
  9. 9.
    K.-M. Lei, P.-I. Mak, M.-K. Law, R.P. Martins, A μNMR CMOS transceiver using a butterfly-coil input for integration with a digital microfluidic device inside a portable magnet. IEEE J. Solid State Circuits 51(10), 2274–2286 (2016c)CrossRefGoogle Scholar
  10. 10.
    K.-M. Lei, P.-I. Mak, M.-K. Law, R.P. Martins, A palm-size μNMR relaxometer using a digital microfluidic device and a semiconductor transceiver for chemical/biological diagnosis. Analyst 140(15), 5129–5137 (2015b)CrossRefGoogle Scholar
  11. 11.
    K.-M. Lei, P.-I. Mak, M.-K. Law, R.P. Martins, A μNMR CMOS transceiver using a butterfly-coil input for integration with a digital microfluidic device inside a portable magnet, in 2015 IEEE Asian Solid-State Circuits Conference (A-SSCC) (2015c), pp. 1–4, 9–11 Nov 2015Google Scholar
  12. 12.
    Y. Liu, N. Sun, H. Lee, R. Weissleder, D. Ham, CMOS mini nuclear magnetic resonance system and its application for biomolecular sensing, in 2008 IEEE International Solid-State Circuits Conference (ISSCC) (2008), pp. 140–602, 3–7 Feb 2008Google Scholar
  13. 13.
    N. Sun, T.J. Yoon, H. Lee, W. Andress, R. Weissleder, D. Ham, Palm NMR and 1-Chip NMR. IEEE J. Solid State Circuits 46(1), 342–352 (2011)CrossRefGoogle Scholar
  14. 14.
    N. Sun, T.J. Yoon, H. Lee, W. Andress, V. Demas, P. Prado, R. Weissleder, D. Ham, Palm NMR and one-chip NMR, in 2010 IEEE International Solid-State Circuits Conference – (ISSCC) (2010), pp. 488–489, 7–11 Feb 2010Google Scholar
  15. 15.
    N. Sun, Y. Liu, H. Lee, R. Weissleder, D. Ham, CMOS RF biosensor utilizing nuclear magnetic resonance. IEEE J. Solid State Circuits 44(5), 1629–1643 (2009)CrossRefGoogle Scholar
  16. 16.
    D. Ham, A. Hajimiri, Virtual damping and Einstein relation in oscillators. IEEE J. Solid State Circuits 38(3), 407–418 (2003)CrossRefGoogle Scholar
  17. 17.
    X. Li, W. Zhu, D. Ham, Phase diffusion and lamb-shift-like spectrum shift in classical oscillators. (2010a). arXiv:0908.2214v3Google Scholar
  18. 18.
    X.F. Li, O.O. Yildirim, W.J. Zhu, D. Ham, Phase noise of distributed oscillators. IEEE Trans. Microwave Theory Tech. 58(8), 2105–2117 (2010b)CrossRefGoogle Scholar
  19. 19.
    D.I. Hoult, R.E. Richards, The signal-to-noise ratio of the nuclear magnetic resonance experiment. J. Magn. Reson. 24(1), 71–85 (1976)Google Scholar
  20. 20.
    R. Gruetter, Automatic, localized in vivo adjustment of all 1st-order and 2nd-order shim coils. Magn. Reson. Med. 29(6), 804–811 (1993)CrossRefGoogle Scholar
  21. 21.
    E. Danieli, J. Perlo, B. Blumich, F. Casanova, Small magnets for portable NMR spectrometers. Angew. Chem. Int. Ed. 49(24), 4133–4135 (2010)CrossRefGoogle Scholar
  22. 22.
    E. Danieli, J. Perlo, F. Casanova, B. Blümich, High-performance shimming with permanent magnets, in Magnetic Resonance Microscopy, 1st edn., (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009a), pp. 485–499Google Scholar
  23. 23.
    E. Danieli, J. Mauler, J. Perlo, B. Blumich, F. Casanova, Mobile sensor for high resolution NMR spectroscopy and imaging. J. Magn. Reson. 198(1), 80–87 (2009b)CrossRefGoogle Scholar
  24. 24.
    H.Y. Carr, E.M. Purcell, Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev. 94(3), 630–638 (1954)CrossRefGoogle Scholar
  25. 25.
    S. Meiboom, D. Gill, Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 29(8), 688–691 (1958)CrossRefGoogle Scholar
  26. 26.
    B. Behnia, A.G. Webb, Limited-sample NMR using solenoidal microcoils perfluouocarbon plugs, and capillary spinning. Anal. Chem. 70(24), 5326–5331 (1998)CrossRefGoogle Scholar
  27. 27.
    D.L. Olson, T.L. Peck, A.G. Webb, R.L. Magin, J.V. Sweedler, High-resolution microcoil 1H-NMR for mass-limited, nanoliter-volume samples. Science 270(5244), 1967–1970 (1995)CrossRefGoogle Scholar
  28. 28.
    F.D. Doty, Probe design and construction, in Encyclopedia of Magnetic Resonance, (Wiley, New York, 2007)Google Scholar
  29. 29.
    A.P.M. Kentgens, J. Bart, P.J.M. van Bentum, A. Brinkmann, E.R.H. Van Eck, J.G.E. Gardeniers, J.W.G. Janssen, P. Knijn, S. Vasa, M.H.W. Verkuijlen, High-resolution liquid- and solid-state nuclear magnetic resonance of nanoliter sample volumes using microcoil detectors. J. Chem. Phys. 128(5) (2008)Google Scholar
  30. 30.
    K.R. Minard, R.A. Wind, Solenoidal microcoil design – part II: optimizing winding parameters for maximum signal-to-noise performance. Concepts Magn. Reson. 13(3), 190–210 (2001a)CrossRefGoogle Scholar
  31. 31.
    K.R. Minard, R.A. Wind, Solenoidal microcoil design. Part I: optimizing RF homogeneity and coil dimensions. Concepts Magn. Reson. 13(2), 128–142 (2001b)CrossRefGoogle Scholar
  32. 32.
    R.M. Fratila, A.H. Velders, Small-volume nuclear magnetic resonance spectroscopy. Annu. Rev. Anal. Chem. 4(1), 227–249 (2011)CrossRefGoogle Scholar
  33. 33.
    C.J. Jones, C.K. Larive, Could smaller really be better? Current and future trends in high-resolution microcoil NMR spectroscopy. Anal. Bioanal. Chem. 402(1), 61–68 (2012)CrossRefGoogle Scholar
  34. 34.
    C. Massin, F. Vincent, A. Homsy, K. Ehrmann, G. Boero, P.A. Besse, A. Daridon, E. Verpoorte, N.F. de Rooij, R.S. Popovic, Planar microcoil-based microfluidic NMR probes. J. Magn. Reson. 164(2), 242–255 (2003)CrossRefGoogle Scholar
  35. 35.
    C. Massin, C. Azevedo, N. Beckmann, P.A. Besse, R.S. Popovic, Magnetic resonance imaging using microfabricated planar coils, in 2nd Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology (2002), pp. 199–204Google Scholar
  36. 36.
    C. Massin, A. Daridon, F. Vincent, G. Boero, P.-A. Besse, E. Verpoorte, N.F. de Rooij, R.S. Popovic, A microfabricated probe with integrated coils and channels for on-chip NMR spectroscopy, in Micro Total Analysis Systems 2001: Proceedings of the μTAS 2001 Symposium, Held in Monterey, 1st edn., ed. by J. M. Ramsey, A. van den Berg (Springer, Dordrecht, 2001), pp. 438–440, 21–25 Oct 2001Google Scholar
  37. 37.
    H. Ryan, S.H. Song, A. Zass, J. Korvink, M. Utz, Contactless NMR spectroscopy on a chip. Anal. Chem. 84(8), 3696–3702 (2012)CrossRefGoogle Scholar
  38. 38.
    J. Anders, G. Chiaramonte, P. SanGiorgio, G. Boero, A single-chip array of NMR receivers. J. Magn. Reson. 201(2), 239–249 (2009)CrossRefGoogle Scholar
  39. 39.
    V. Badilita, K. Kratt, N. Baxan, J. Anders, D. Elverfeldt, G. Boero, J. Hennig, J.G. Korvink, U. Wallrabe, 3D solenoidal microcoil arrays with CMOS integrated amplifiers for parallel MR imaging and spectroscopy, in 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems (2011), pp. 809–812, 23–27 Jan 2011Google Scholar
  40. 40.
    D.I. Hoult, The NMR receiver: a description and analysis of design. Prog. Nucl. Magn. Reson. Spectrosc. 12(1), 41–77 (1978)CrossRefGoogle Scholar
  41. 41.
    H. Lee, T.J. Yoon, J.L. Figueiredo, F.K. Swirski, R. Weissleder, Rapid detection and profiling of cancer cells in fine-needle aspirates. Proc. Natl. Acad. Sci. 106(30), 12459–12464 (2009)CrossRefGoogle Scholar
  42. 42.
    J.D. Trumbull, I.K. Glasgow, D.J. Beebe, R.L. Magin, Integrating microfabricated fluidic systems and NMR spectroscopy. I.E.E.E. Trans. Biomed. Eng. 47(1), 3–7 (2000)CrossRefGoogle Scholar
  43. 43.
    I. Barbulovic-Nad, H. Yang, P.S. Park, A.R. Wheeler, Digital microfluidics for cell-based assays. Lab Chip 8(4), 519–526 (2008)CrossRefGoogle Scholar
  44. 44.
    J. Gao, X.M. Liu, T.L. Chen, P.I. Mak, Y.G. Du, M.I. Vai, B.C. Lin, R.P. Martins, An intelligent digital microfluidic system with fuzzy-enhanced feedback for multi-droplet manipulation. Lab Chip 13(3), 443–451 (2013)CrossRefGoogle Scholar
  45. 45.
    F. Lapierre, M. Harnois, Y. Coffinier, R. Boukherroub, V. Thomy, Split and flow: reconfigurable capillary connection for digital microfluidic devices. Lab Chip 14(18), 3589–3593 (2014)CrossRefGoogle Scholar
  46. 46.
    M.G. Pollack, A.D. Shenderov, R.B. Fair, Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2(2), 96–101 (2002)CrossRefGoogle Scholar
  47. 47.
    M.H. Shamsi, K. Choi, A.H.C. Ng, A.R. Wheeler, A digital microfluidic electrochemical immunoassay. Lab Chip 14(3), 547–554 (2014)CrossRefGoogle Scholar
  48. 48.
    V. Srinivasan, V.K. Pamula, R.B. Fair, An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 4(4), 310–315 (2004)CrossRefGoogle Scholar
  49. 49.
    A.R. Wheeler, Chemistry – putting electrowetting to work. Science 322(5901), 539–540 (2008)CrossRefGoogle Scholar
  50. 50.
    I. Barbulovic-Nad, S.H. Au, A.R. Wheeler, A microfluidic platform for complete mammalian cell culture. Lab Chip 10(12), 1536–1542 (2010)CrossRefGoogle Scholar
  51. 51.
    G.J. Shah, A.T. Ohta, E.P.Y. Chiou, M.C. Wu, C.-J. Kim, EWOD-driven droplet microfluidic device integrated with optoelectronic tweezers as an automated platform for cellular isolation and analysis. Lab Chip 9(12), 1732–1739 (2009)CrossRefGoogle Scholar
  52. 52.
    Y.-H. Chang, G.-B. Lee, F.-C. Huang, Y.-Y. Chen, J.-L. Lin, Integrated polymerase chain reaction chips utilizing digital microfluidics. Biomed. Microdevices 8(3), 215–225 (2006)CrossRefGoogle Scholar
  53. 53.
    Z. Hua, J.L. Rouse, A.E. Eckhardt, V. Srinivasan, V.K. Pamula, W.A. Schell, J.L. Benton, T.G. Mitchell, M.G. Pollack, Multiplexed real-time polymerase chain reaction on a digital microfluidic platform. Anal. Chem. 82(6), 2310–2316 (2010)CrossRefGoogle Scholar
  54. 54.
    R. Sista, Z. Hua, P. Thwar, A. Sudarsan, V. Srinivasan, A. Eckhardt, M. Pollack, V. Pamula, Development of a digital microfluidic platform for point of care testing. Lab Chip 8(12), 2091–2104 (2008)CrossRefGoogle Scholar
  55. 55.
    D. Witters, K. Knez, F. Ceyssens, R. Puers, J. Lammertyn, Digital microfluidics-enabled single-molecule detection by printing and sealing single magnetic beads in femtoliter droplets. Lab Chip 13(11), 2047–2054 (2013)CrossRefGoogle Scholar
  56. 56.
    P. Andreani, K. Kozmin, P. Sandrup, M. Nilsson, T. Mattsson, A TX VCO for WCDMA/EDGE in 90 nm RF CMOS. IEEE J. Solid State Circuits 46(7), 1618–1626 (2011)CrossRefGoogle Scholar
  57. 57.
    T. Mattsson, Method of and inductor layout for reduced VCO coupling. U.S. Patent 7,151,430, 19 Dec 2006Google Scholar
  58. 58.
    M. Nagata, H. Masuoka, S.I. Fukase, M. Kikuta, M. Morita, N. Itoh, 5.8 GHz RF transceiver LSI including on-chip matching circuits, in Bipolar/BiCMOS Circuits and Technology Meeting (2006), pp. 263–266, Oct 2006Google Scholar
  59. 59.
    F. Mugele, J.C. Baret, Electrowetting: from basics to applications. J. Phys. Condens. Matter 17(28), R705–R774 (2005)CrossRefGoogle Scholar
  60. 60.
    J. Gong, C.J. Kim, All-electronic droplet generation on-chip with real-time feedback control for EWOD digital microfluidics. Lab Chip 8(6), 898–906 (2008)CrossRefGoogle Scholar
  61. 61.
    W.K. Peng, L. Chen, J. Han, Development of miniaturized, portable magnetic resonance relaxometry system for point-of-care medical diagnosis. Rev. Sci. Instrum. 83(9) (2012)Google Scholar
  62. 62.
    J.M. Pope, N. Repin, A simple approach to T2 imaging in MRI. Magn. Reson. Imaging 6(6), 641–646 (1988)CrossRefGoogle Scholar
  63. 63.
    D. Ha, J. Paulsen, N. Sun, Y.Q. Song, D. Ham, Scalable NMR spectroscopy with semiconductor chips. Proc. Natl. Acad. Sci. 111(33), 11955–11960 (2014)CrossRefGoogle Scholar
  64. 64.
    E. Kupce, R. Freeman, Molecular structure from a single NMR sequence (fast-PANACEA). J. Magn. Reson. 206(1), 147–153 (2010)CrossRefGoogle Scholar
  65. 65.
    G.A. Morris, H. Barjat, T.J. Horne, Reference deconvolution methods. Prog. Nucl. Magn. Reson. Spectrosc. 31(1), 197–257 (1997)CrossRefGoogle Scholar
  66. 66.
    H. Heidari, E. Bonizzoni, U. Gatti, F. Maloberti, A CMOS current-mode magnetic hall sensor with integrated front-end. IEEE Trans. Circuits Syst. I Regul. Pap. 62(5), 1270–1278 (2015)MathSciNetCrossRefGoogle Scholar
  67. 67.
    J. Jiang, K. Makinwa, A hybrid multipath CMOS magnetic sensor with 210μTrms resolution and 3MHz bandwidth for contactless current sensing, in 2016 IEEE International Solid-State Circuits Conference (ISSCC) (2016), pp. 204–205, Feb 2016Google Scholar
  68. 68.
    J.F. Jiang, W.J. Kindt, K.A.A. Makinwa, A continuous-time ripple reduction technique for spinning-current hall sensors. IEEE J. Solid State Circuits 49(7), 1525–1534 (2014)CrossRefGoogle Scholar
  69. 69.
    C. Sander, M.C. Vecchi, M. Cornils, O. Paul, From three-contact vertical hall elements to symmetrized vertical hall sensors with low offset. Sens Actuators, A 240, 92–102 (2016)CrossRefGoogle Scholar
  70. 70.
    G.M. Sung, C.P. Yu, 2-D differential folded vertical hall device fabricated on a p-type substrate using CMOS technology. IEEE Sensors J. 13(6), 2253–2262 (2013)CrossRefGoogle Scholar
  71. 71.
    M. Crescentini, M. Bennati, M. Carminati, M. Tartagni, Noise limits of CMOS current interfaces for biosensors: a review. IEEE Trans. Biomed. Circuits Syst. 8(2), 278–292 (2014)CrossRefGoogle Scholar
  72. 72.
    D. Kim, B. Goldstein, W. Tang, F.J. Sigworth, E. Culurciello, Noise analysis and performance comparison of low current measurement systems for biomedical applications. IEEE Trans. Biomed. Circuits Syst. 7(1), 52–62 (2013)CrossRefGoogle Scholar
  73. 73.
    K.-M. Lei, H. Heidari, P.-I. Mak, M.-K. Law, F. Maloberti, Exploring the noise limits of fully-differential micro-watt transimpedance amplifiers for Sub-pA/√Hz sensitivity, in 2015 11th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME) (2015a), pp. 290–293, June 2015Google Scholar
  74. 74.
    L.K. Lee, S. Choi, J.O. Lee, Yoon JB, Cho GH (2012) CMOS capacitive biosensor with enhanced sensitivity for label-free DNA detection, in 2012 IEEE International Solid-State Circuits Conference, pp. 120–122, Feb 2012Google Scholar
  75. 75.
    A. Manickam, A. Chevalier, M. McDermott, A.D. Ellington, A. Hassibi, A CMOS electrochemical impedance spectroscopy (EIS) biosensor array. IEEE Trans. Biomed. Circuits Syst. 4(6), 379–390 (2010)CrossRefGoogle Scholar
  76. 76.
    T.C.D. Huang, S. Sorgenfrei, P. Gong, R. Levicky, K.L. Shepard, A 0.18-μm CMOS array sensor for integrated time-resolved fluorescence detection. IEEE J. Solid State Circuits 44(5), 1644–1654 (2009)CrossRefGoogle Scholar
  77. 77.
    H. Norian, R.M. Field, I. Kymissis, K.L. Shepard, An integrated CMOS quantitative-polymerase-chain-reaction lab-on-chip for point-of-care diagnostics. Lab Chip 14(20), 4076–4084 (2014)CrossRefGoogle Scholar
  78. 78.
    K.-M. Lei, P.-I. Mak, M.-K. Law, R.P. Martins, CMOS biosensors for in vitro diagnosis – transducing mechanisms and applications. Lab Chip 16, 3664–3681 (2016a)Google Scholar
  79. 79.
    J. Anders, P. SanGiorgio, G. Boero, A fully integrated IQ-receiver for NMR microscopy. J. Magn. Reson. 209(1), 1–7 (2011)CrossRefGoogle Scholar
  80. 80.
    J. Handwerker, M. Eder, M. Tibiletti, V. Rasche, K. Scheffler, J. Becker, M. Ortmanns, J. Anders, An array of fully-integrated quadrature TX/RX NMR field probes for MRI trajectory mapping, in 42nd European Solid-State Circuits Conference (2016b), pp. 217–220, 12–15 Sept 2016Google Scholar
  81. 81.
    M.J.N. Junk, Electron paramagnetic resonance theory, in Assessing the Functional Structure of Molecular Transporters by EPR Spectroscopy, (Springer, Berlin/Heidelberg, 2012), pp. 7–52CrossRefGoogle Scholar
  82. 82.
    J. Handwerker, B. Schlecker, U. Wachter, P. Radermacher, M. Ortmanns, J. Anders, A 14GHz battery-operated point-of-care ESR spectrometer based on a 0.13μm CMOS ASIC, in 2016 IEEE International Solid-State Circuits Conference (ISSCC) (2016a), pp. 476–477, 31 Jan–4 Feb 2016Google Scholar
  83. 83.
    X. Yang, A. Babakhani, A full-duplex single-chip transceiver with self-interference cancellation in 0.13μm SiGe BiCMOS for electron paramagnetic resonance spectroscopy. IEEE J. Solid State Circuits 51(10), 2408–2419 (2016)CrossRefGoogle Scholar
  84. 84.
    X. Yang, A. Babakhani, A single-chip electron paramagnetic resonance transceiver in 0.13-μm SiGe BiCMOS. IEEE Trans. Microwave Theory Tech. 63(11), 3727–3735 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Analog and Mixed-Signal VLSI and FST-ECEUniversity of MacauMacauChina
  2. 2.Department of Electrical and Computer EngineeringUniversity of Texas at AustinAustinUSA
  3. 3.Instituto Superior TécnicoUniversidade de LisboaLisboaPortugal
  4. 4.School of Engineering and Applied SciencesHarvard UniversityCambridgeUSA

Personalised recommendations