Abstract
Multimodal sensor arrays with potentiometric, amperometric, impedimetric, and photometric sensors have been designed and fabricated by standard CMOS process and post-CMOS process to form gold electrodes and microfluidics. Three types of sensor arrays, 64 × 64 potentiometric and photometric sensor array, 64 × 64 ASSP (application-specific standard product) sensor array, and 512 × 512 high-density sensor array, are implemented in 7 × 7.5 mm2 chip and total power consumption 10 mW using 0.6 μm CMOS technology. In potentiometric and photometric sensor array, electric potential is sensed and outputted as an analog signal by a cascode source-drain follower, and photocurrent is converted to digital signal by current-mode ADC (analog-to-digital converter). In ASSP sensor array, potentiometric, amperometric, impedimetric, and photometric sensors output electric currents which are processed by current mixers and current-mode ADCs in array peripheral circuits. In high-density sensor array, submicron gold electrodes are formed by electroless plating. These sensors are applied to enzyme sensor with redox mediator and counting bacteria/viruses one by one. Stand-alone portable diagnostic inspection system is constructed with 18 × 10 × 5.5 cm3 and 850 g. Power is 5 V 220 mA supplied from USB adapter.
Keywords
- Complementary Metal Oxide Semiconductor (CMOS)
- High-density Sensor Arrays
- Standard CMOS Process
- Application-specific Standard Product (ASSP)
- Photometric Sensor
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
References
K. Nakazato, M. Ohura, S. Uno, CMOS cascode source-drain follower for monolithically integrated biosensor Array. IEICE Trans. Electron. E91-C(9), 1505–1515 (2008). https://doi.org/10.1093/ietele/e91-c.9.1505
J. Hasegawa, S. Uno, K. Nakazato, Amperometric electrochemical sensor Array for on-Chip simultaneous imaging: circuit and microelectrode design considerations. Jpn. J. Appl. Phys. 50, 04DL03 (2011). https://doi.org/10.1143/JJAP.50.04DL03
M. Bennati, F. Thei, M. Rossi, M. Crescentini, G. D’Avino, A. Baschirotto, M. Tartagni, A sub-pA ΔΣ current amplifier for single-molecule nanosensors. ISSCC Dig. Tech. Papers, 348–349 (2009). https://doi.org/10.1109/ISSCC.2009.4977451
M.H. Nazari, H. Mazhab-Jafari, L. Leng, A. Guenther, R. Genov, CMOS neurotransmitter microarray: 96-channel integrated potentiostat with on-die microsensors. IEEE Trans. Biomed. Circuits Syst. 7(3), 338–348 (2013). https://doi.org/10.1109/TBCAS.2012.2203597
J. Rothe, O. Frey, A. Stettler, Y. Chen, A. Hierlemann, Fully integrated CMOS microsystems for electrochemical measurements on 32 × 32 working electrodes at 90 frames per second. Anal. Chem. 86, 6425–6432 (2014). https://doi.org/10.1021/ac500862v
M. Yang, S.C. Liu, T. Delbruck, A dynamic vision sensor with 1% temporal contrast sensitivity and in-pixel asynchronous delta modulator for event encoding. IEEE J. Solid State Circuits 50(9), 2149–2160 (2015). https://doi.org/10.1109/JSSC.2015.2425886
M. Takihi, K. Niitsu, K. Nakazato, Charge-conserved analog-to-time converter for a large-scale CMOS biosensor array. IEEE Int. Symp. Circuits Syst. (ISCAS 2014), 33–36 (2014). https://doi.org/10.1109/ISCAS.2014.6865058
K. Ikeda, A. Kobayashi, K. Nakazato, K. Niitsu, Design and analysis of scalability in current-mode analog-to-time converter for an energy-efficient and high-resolution CMOS biosensor array. IEICE Trans. Electron (2017) (in press)
P. Georgiou, C. Toumazou, An adaptive ISFET chemical imager chip. IEEE Int. Symp. Circuits Syst. (ISCAS 2008), 2078–2081 (2008). https://doi.org/10.1109/ISCAS.2008.4541858
P. Bergveld, Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans. Biomed. Eng. BME-17, 70–71 (1970)
K. Sawada, S. Mimura, K. Tomita, T. Nakanishi, H. Tanabe, M. Ishida, T. Ando, Novel CCD-based pH imaging sensor. IEEE Trans. Electron Devices 46(9), 1846–1849 (1999)
D.M. Garner, H. Bai, P. Georgiou, T.G. Constandinou, S. Reed, L.M. Shepherd, W. Wong Jr., K.T. Lim, C. Toumazou, A multichannel DNA SoC for rapid point-of-care gene detection. ISSCC Dig. Tech. Papers, 492–493 (2010). https://doi.org/10.1109/ISSCC.2010.5433834
T. Sakata, Y. Miyahara, Direct transduction of allele-specific primer extension into electrical signal using genetic field effect transistor. Biosens. Bioelectron. 22, 1311–1316 (2007). https://doi.org/10.1016/j.bios.2006.05.031
J.M. Rothberg et al., An integrated semiconductor device enabling non-optical genome sequencing. Nature 475, 348–352 (2011). https://doi.org/10.1038/nature10242
M. Kamahori, K. Harada, H. Kambara, A new single nucleotide polymorphisms typing method and device by bioluminometric assay coupled with a photodiode array. Meas. Sci. Technol. 13, 1779–1785 (2002)
K. Gamo, K. Nakazato, K. Niitsu, A Current-integration-based CMOS amperometric sensor with 1024 × 1024 bacteria-sized microelectrode array for high-sensitivity bacteria counting. IEICE Trans. Electron (2017) (in press)
K. Niitsu, K. Ikeda, K. Muto, K. Nakazato, Design, experimental verification, and analysis of a 1.8-V-input-range voltage-to-current converter using source degeneration for low-noise multimodal CMOS biosensor array. Jpn. J. Appl. Phys 56, 01AH06 (2017). https://doi.org/10.7567/JJAP.56.01AH06
T. Kuno, K. Niitsu, K. Nakazato, Amperometric electrochemical sensor array for on-chip simultaneous imaging. Jpn. J. Appl. Phys 53, 04EL01 (2014). https://doi.org/10.7567/JJAP.53.04EL01
A. Manickam, A. Chevalier, M. McDermott, A.D. Ellington, A. Hassibi, A CMOS electrochemical impedance spectroscopy (EIS) biosensor array. IEEE Trans. Biomed. Circuits Syst. 4(6), 379–390 (2010). https://doi.org/10.1109/TBCAS.2010.2081669
S. Hwang, C.N. LaFratta, V. Agarwal, X.J. Yu, D.R. Walt, S. Sonkusale, CMOS microelectrode array for electrochemical lab-on-a-chip applications. IEEE Sensors J. 9(6), 609–615 (2009). https://doi.org/10.1109/JSEN.2009.2020193
M. Datta, S.A. Merritt, M. Dagenais, Electroless remetallization of aluminum bond pads on CMOS driver chip for flip-chip attachment to vertical cavity surface emitting lasers (VCEL’s). IEEE Trans. Compon. Pack. Technol. 22(2), 299–306 (1999)
Kanigen Technical Report No. 9. http://www.kanigen.co.jp/file/report9.pdf (in Japanese)
M. Kamahori, Y. Ishige, M. Shimoda, Enzyme immunoassay using a reusable extended-gate field-effect-transistor sensor with a ferrocenylalkanethiol-modified gold electrode. Anal. Sci. 24, 1073–1079 (2008)
Y. Ishige, M. Shimoda, M. Kamahori, Extended-gate FET-based enzyme sensor with ferrocenyl-alkanethiol modified gold sensing electrode. Biosens. Bioelectron. 24, 1096–1102 (2009). https://doi.org/10.1016/j.bios.2008.06.012
H. Anan, M. Kamahori, Y. Ishige, K. Nakazato, Redox-potential sensor array based on extended-gate field-effect transistors with ω-ferrocenylalkanethiol-modified gold electrodes. Sensors Actuators B Chem. 187, 254–261 (2013). https://doi.org/10.1016/j.snb.2012.11.016
W. Guan, X. Duan, M.A. Reed, Highly specific and sensitive non-enzymatic determination of uric acid in serum and urine by extended gate field effect transistor sensors. Biosens. Bioelectron. 51, 225–231 (2014). https://doi.org/10.1016/j.bios.2013.07.061
M.J. Milgrew, D.R.S. Cumming, Matching the transconductance characteristics of CMOS ISFET arrays by removing trapped charge. IEEE Trans. Electron Devices 55(4), 1074–1079 (2008). https://doi.org/10.1109/TED.2008.916680
H. Komori, K. Niitsu, J. Tanaka, Y. Ishige, M. Kamahori, K. Nakazato, An extended-gate CMOS sensor Array with enzyme-immobilized microbeads for redox-potential glucose detection. Proc. IEEE Biomed. Circuits Syst. Conf. (BioCAS 2014), 464–467 (2014). https://doi.org/10.1109/BioCAS.2014.6981763
H. Ishihara, K. Niitsu, K. Nakazato, Analysis and experimental verification of DNA single-base polymerization detection using CMOS FET-based redox potential sensor array. Jpn. J. Appl. Phys. 54, 04DL05 (2015). https://doi.org/10.7567/JJAP.54.04DL05
H. Tanaka, P. Fiorini, S. Peeters, B. Majeed, T. Sterken, M. Op de Beeck, M. Hayashi, H. Yaku, I. Yamashita, Sub-micro-liter electrochemical single-nucleotide-polymorphism detector for lab-on-a-chip system. Jpn. J. Appl. Phys. 51, 04DL02 (2012). https://doi.org/10.1143/JJAP.51.04DL02
Y. Ishige, Y. Goto, I. Yanagi, T. Ishida, N. Itabashi, M. Kamahori, Feasibility study on direct counting of viruses and bacteria by using microelectrode array. Electroanalysis 24(1), 131–139 (2012). https://doi.org/10.1002/elan.201100482
K. Niitsu, S. Ota, K. Gamo, H. Kondo, M. Hori, K. Nakazato, Development of microelectrode arrays using electroless plating for CMOS-based direct counting of bacterial and HeLa cells. IEEE Trans. Biomed. Circuits Syst. 9(5), 607–619 (2015). https://doi.org/10.1109/TBCAS.2015.2479656
T. Satoh, J. Kato, N. Takiguchi, H. Ohtake, A. Kuroda, ATP amplification for ultrasensitive bioluminescence assay: detection of a single bacterial cell. Biosci. Biotechnol. Biochem. 68(6), 1216–1220 (2004). https://doi.org/10.1271/bbb.68.1216
M.A.G. Zevenbergen, P.S. Singh, E.D. Goluch, B.L. Wolfrum, S.G. Lemay, Stochastic sensing of single molecules in a nanofluidic electrochemical device. Nano Lett. 11, 2881–2886 (2011). https://doi.org/10.1021/nl2013423
C. Toumazou et al., Simultaneous DNA amplification and detection using a pH-sensing semiconductor system. Nat. Methods 10(7), 641–646 (2013). https://doi.org/10.1038/NMETH.2520
H. Norian, R.M. Field, I. Kymissis, K.L. Shepard, An integrated CMOS quantitative-polymerase-chain-reaction lab-on-chip for point-of-care diagnostics. Lab Chip 14, 4076–4084 (2014). https://doi.org/10.1039/c4lc00443d
Acknowledgments
This research is financially supported by a Grant-in-Aid for Scientific Research (No. 25220906, 20226009) from the Ministry of Education, Culture, Sports, Science and Technology of Japan and by Adaptable and Seamless Technology Transfer Program through Target-Driven R&D (No. AS272S001b) from the Japan Science and Technology Agency, Japan.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this chapter
Cite this chapter
Nakazato, K. (2018). CMOS Multimodal Sensor Array for Biomedical Sensing. In: Mitra, S., Cumming, D. (eds) CMOS Circuits for Biological Sensing and Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-67723-1_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-67723-1_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67722-4
Online ISBN: 978-3-319-67723-1
eBook Packages: EngineeringEngineering (R0)