CMOS Multimodal Sensor Array for Biomedical Sensing
- 1.6k Downloads
Abstract
Multimodal sensor arrays with potentiometric, amperometric, impedimetric, and photometric sensors have been designed and fabricated by standard CMOS process and post-CMOS process to form gold electrodes and microfluidics. Three types of sensor arrays, 64 × 64 potentiometric and photometric sensor array, 64 × 64 ASSP (application-specific standard product) sensor array, and 512 × 512 high-density sensor array, are implemented in 7 × 7.5 mm2 chip and total power consumption 10 mW using 0.6 μm CMOS technology. In potentiometric and photometric sensor array, electric potential is sensed and outputted as an analog signal by a cascode source-drain follower, and photocurrent is converted to digital signal by current-mode ADC (analog-to-digital converter). In ASSP sensor array, potentiometric, amperometric, impedimetric, and photometric sensors output electric currents which are processed by current mixers and current-mode ADCs in array peripheral circuits. In high-density sensor array, submicron gold electrodes are formed by electroless plating. These sensors are applied to enzyme sensor with redox mediator and counting bacteria/viruses one by one. Stand-alone portable diagnostic inspection system is constructed with 18 × 10 × 5.5 cm3 and 850 g. Power is 5 V 220 mA supplied from USB adapter.
Keywords
Complementary Metal Oxide Semiconductor (CMOS) High-density Sensor Arrays Standard CMOS Process Application-specific Standard Product (ASSP) Photometric SensorNotes
Acknowledgments
This research is financially supported by a Grant-in-Aid for Scientific Research (No. 25220906, 20226009) from the Ministry of Education, Culture, Sports, Science and Technology of Japan and by Adaptable and Seamless Technology Transfer Program through Target-Driven R&D (No. AS272S001b) from the Japan Science and Technology Agency, Japan.
References
- 1.K. Nakazato, M. Ohura, S. Uno, CMOS cascode source-drain follower for monolithically integrated biosensor Array. IEICE Trans. Electron. E91-C(9), 1505–1515 (2008). https://doi.org/10.1093/ietele/e91-c.9.1505 CrossRefGoogle Scholar
- 2.J. Hasegawa, S. Uno, K. Nakazato, Amperometric electrochemical sensor Array for on-Chip simultaneous imaging: circuit and microelectrode design considerations. Jpn. J. Appl. Phys. 50, 04DL03 (2011). https://doi.org/10.1143/JJAP.50.04DL03 CrossRefGoogle Scholar
- 3.M. Bennati, F. Thei, M. Rossi, M. Crescentini, G. D’Avino, A. Baschirotto, M. Tartagni, A sub-pA ΔΣ current amplifier for single-molecule nanosensors. ISSCC Dig. Tech. Papers, 348–349 (2009). https://doi.org/10.1109/ISSCC.2009.4977451
- 4.M.H. Nazari, H. Mazhab-Jafari, L. Leng, A. Guenther, R. Genov, CMOS neurotransmitter microarray: 96-channel integrated potentiostat with on-die microsensors. IEEE Trans. Biomed. Circuits Syst. 7(3), 338–348 (2013). https://doi.org/10.1109/TBCAS.2012.2203597 CrossRefGoogle Scholar
- 5.J. Rothe, O. Frey, A. Stettler, Y. Chen, A. Hierlemann, Fully integrated CMOS microsystems for electrochemical measurements on 32 × 32 working electrodes at 90 frames per second. Anal. Chem. 86, 6425–6432 (2014). https://doi.org/10.1021/ac500862v CrossRefGoogle Scholar
- 6.M. Yang, S.C. Liu, T. Delbruck, A dynamic vision sensor with 1% temporal contrast sensitivity and in-pixel asynchronous delta modulator for event encoding. IEEE J. Solid State Circuits 50(9), 2149–2160 (2015). https://doi.org/10.1109/JSSC.2015.2425886 CrossRefGoogle Scholar
- 7.M. Takihi, K. Niitsu, K. Nakazato, Charge-conserved analog-to-time converter for a large-scale CMOS biosensor array. IEEE Int. Symp. Circuits Syst. (ISCAS 2014), 33–36 (2014). https://doi.org/10.1109/ISCAS.2014.6865058
- 8.K. Ikeda, A. Kobayashi, K. Nakazato, K. Niitsu, Design and analysis of scalability in current-mode analog-to-time converter for an energy-efficient and high-resolution CMOS biosensor array. IEICE Trans. Electron (2017) (in press)Google Scholar
- 9.P. Georgiou, C. Toumazou, An adaptive ISFET chemical imager chip. IEEE Int. Symp. Circuits Syst. (ISCAS 2008), 2078–2081 (2008). https://doi.org/10.1109/ISCAS.2008.4541858
- 10.P. Bergveld, Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans. Biomed. Eng. BME-17, 70–71 (1970)CrossRefGoogle Scholar
- 11.K. Sawada, S. Mimura, K. Tomita, T. Nakanishi, H. Tanabe, M. Ishida, T. Ando, Novel CCD-based pH imaging sensor. IEEE Trans. Electron Devices 46(9), 1846–1849 (1999)CrossRefGoogle Scholar
- 12.D.M. Garner, H. Bai, P. Georgiou, T.G. Constandinou, S. Reed, L.M. Shepherd, W. Wong Jr., K.T. Lim, C. Toumazou, A multichannel DNA SoC for rapid point-of-care gene detection. ISSCC Dig. Tech. Papers, 492–493 (2010). https://doi.org/10.1109/ISSCC.2010.5433834
- 13.T. Sakata, Y. Miyahara, Direct transduction of allele-specific primer extension into electrical signal using genetic field effect transistor. Biosens. Bioelectron. 22, 1311–1316 (2007). https://doi.org/10.1016/j.bios.2006.05.031 CrossRefGoogle Scholar
- 14.J.M. Rothberg et al., An integrated semiconductor device enabling non-optical genome sequencing. Nature 475, 348–352 (2011). https://doi.org/10.1038/nature10242 CrossRefGoogle Scholar
- 15.M. Kamahori, K. Harada, H. Kambara, A new single nucleotide polymorphisms typing method and device by bioluminometric assay coupled with a photodiode array. Meas. Sci. Technol. 13, 1779–1785 (2002)CrossRefGoogle Scholar
- 16.K. Gamo, K. Nakazato, K. Niitsu, A Current-integration-based CMOS amperometric sensor with 1024 × 1024 bacteria-sized microelectrode array for high-sensitivity bacteria counting. IEICE Trans. Electron (2017) (in press)Google Scholar
- 17.K. Niitsu, K. Ikeda, K. Muto, K. Nakazato, Design, experimental verification, and analysis of a 1.8-V-input-range voltage-to-current converter using source degeneration for low-noise multimodal CMOS biosensor array. Jpn. J. Appl. Phys 56, 01AH06 (2017). https://doi.org/10.7567/JJAP.56.01AH06 CrossRefGoogle Scholar
- 18.T. Kuno, K. Niitsu, K. Nakazato, Amperometric electrochemical sensor array for on-chip simultaneous imaging. Jpn. J. Appl. Phys 53, 04EL01 (2014). https://doi.org/10.7567/JJAP.53.04EL01 CrossRefGoogle Scholar
- 19.A. Manickam, A. Chevalier, M. McDermott, A.D. Ellington, A. Hassibi, A CMOS electrochemical impedance spectroscopy (EIS) biosensor array. IEEE Trans. Biomed. Circuits Syst. 4(6), 379–390 (2010). https://doi.org/10.1109/TBCAS.2010.2081669 CrossRefGoogle Scholar
- 20.S. Hwang, C.N. LaFratta, V. Agarwal, X.J. Yu, D.R. Walt, S. Sonkusale, CMOS microelectrode array for electrochemical lab-on-a-chip applications. IEEE Sensors J. 9(6), 609–615 (2009). https://doi.org/10.1109/JSEN.2009.2020193 CrossRefGoogle Scholar
- 21.M. Datta, S.A. Merritt, M. Dagenais, Electroless remetallization of aluminum bond pads on CMOS driver chip for flip-chip attachment to vertical cavity surface emitting lasers (VCEL’s). IEEE Trans. Compon. Pack. Technol. 22(2), 299–306 (1999)CrossRefGoogle Scholar
- 22.Kanigen Technical Report No. 9. http://www.kanigen.co.jp/file/report9.pdf (in Japanese)
- 23.M. Kamahori, Y. Ishige, M. Shimoda, Enzyme immunoassay using a reusable extended-gate field-effect-transistor sensor with a ferrocenylalkanethiol-modified gold electrode. Anal. Sci. 24, 1073–1079 (2008)CrossRefGoogle Scholar
- 24.Y. Ishige, M. Shimoda, M. Kamahori, Extended-gate FET-based enzyme sensor with ferrocenyl-alkanethiol modified gold sensing electrode. Biosens. Bioelectron. 24, 1096–1102 (2009). https://doi.org/10.1016/j.bios.2008.06.012 CrossRefGoogle Scholar
- 25.H. Anan, M. Kamahori, Y. Ishige, K. Nakazato, Redox-potential sensor array based on extended-gate field-effect transistors with ω-ferrocenylalkanethiol-modified gold electrodes. Sensors Actuators B Chem. 187, 254–261 (2013). https://doi.org/10.1016/j.snb.2012.11.016 CrossRefGoogle Scholar
- 26.W. Guan, X. Duan, M.A. Reed, Highly specific and sensitive non-enzymatic determination of uric acid in serum and urine by extended gate field effect transistor sensors. Biosens. Bioelectron. 51, 225–231 (2014). https://doi.org/10.1016/j.bios.2013.07.061 CrossRefGoogle Scholar
- 27.M.J. Milgrew, D.R.S. Cumming, Matching the transconductance characteristics of CMOS ISFET arrays by removing trapped charge. IEEE Trans. Electron Devices 55(4), 1074–1079 (2008). https://doi.org/10.1109/TED.2008.916680
- 28.H. Komori, K. Niitsu, J. Tanaka, Y. Ishige, M. Kamahori, K. Nakazato, An extended-gate CMOS sensor Array with enzyme-immobilized microbeads for redox-potential glucose detection. Proc. IEEE Biomed. Circuits Syst. Conf. (BioCAS 2014), 464–467 (2014). https://doi.org/10.1109/BioCAS.2014.6981763
- 29.H. Ishihara, K. Niitsu, K. Nakazato, Analysis and experimental verification of DNA single-base polymerization detection using CMOS FET-based redox potential sensor array. Jpn. J. Appl. Phys. 54, 04DL05 (2015). https://doi.org/10.7567/JJAP.54.04DL05 CrossRefGoogle Scholar
- 30.H. Tanaka, P. Fiorini, S. Peeters, B. Majeed, T. Sterken, M. Op de Beeck, M. Hayashi, H. Yaku, I. Yamashita, Sub-micro-liter electrochemical single-nucleotide-polymorphism detector for lab-on-a-chip system. Jpn. J. Appl. Phys. 51, 04DL02 (2012). https://doi.org/10.1143/JJAP.51.04DL02 CrossRefGoogle Scholar
- 31.Y. Ishige, Y. Goto, I. Yanagi, T. Ishida, N. Itabashi, M. Kamahori, Feasibility study on direct counting of viruses and bacteria by using microelectrode array. Electroanalysis 24(1), 131–139 (2012). https://doi.org/10.1002/elan.201100482 CrossRefGoogle Scholar
- 32.K. Niitsu, S. Ota, K. Gamo, H. Kondo, M. Hori, K. Nakazato, Development of microelectrode arrays using electroless plating for CMOS-based direct counting of bacterial and HeLa cells. IEEE Trans. Biomed. Circuits Syst. 9(5), 607–619 (2015). https://doi.org/10.1109/TBCAS.2015.2479656 CrossRefGoogle Scholar
- 33.T. Satoh, J. Kato, N. Takiguchi, H. Ohtake, A. Kuroda, ATP amplification for ultrasensitive bioluminescence assay: detection of a single bacterial cell. Biosci. Biotechnol. Biochem. 68(6), 1216–1220 (2004). https://doi.org/10.1271/bbb.68.1216 CrossRefGoogle Scholar
- 34.M.A.G. Zevenbergen, P.S. Singh, E.D. Goluch, B.L. Wolfrum, S.G. Lemay, Stochastic sensing of single molecules in a nanofluidic electrochemical device. Nano Lett. 11, 2881–2886 (2011). https://doi.org/10.1021/nl2013423 CrossRefGoogle Scholar
- 35.C. Toumazou et al., Simultaneous DNA amplification and detection using a pH-sensing semiconductor system. Nat. Methods 10(7), 641–646 (2013). https://doi.org/10.1038/NMETH.2520 CrossRefGoogle Scholar
- 36.H. Norian, R.M. Field, I. Kymissis, K.L. Shepard, An integrated CMOS quantitative-polymerase-chain-reaction lab-on-chip for point-of-care diagnostics. Lab Chip 14, 4076–4084 (2014). https://doi.org/10.1039/c4lc00443d CrossRefGoogle Scholar