CMOS Nano-Pore Technology

  • Sina Parsnejad
  • Andrew J. Mason


In this chapter the principles of nano-pore sensing are discussed with a focus on CMOS interfacing requirements and solutions. The goal is to understand basic functionality of nano-pores, understand the conditions that would enable proper interfacing of nano-pore structures, and define the CMOS readout approaches that overcome limiting factors such as noise performance and area. Section 1 outlines nano-pore sensing, defines unique characteristics of nano-pore-enabled sensing, and describes varieties of nano-pores and their operation principles. Section 2 defines the challenges in interfacing with nano-pores using electrochemical methods and highlights some of the CMOS solutions available in literature. Section 2 also discusses the use of nano-pores in an array format for parallel sensing and characterization, outlines the challenges in nano-pore-facilitated sensing, and describes unique CMOS-based solutions.


Nano-pore CMOS readout Biosensor Ion channel 


  1. 1.
    G. Zheng, C.M. Lieber, Nanowire biosensors for label-free, real-time, ultrasensitive protein detection, in Nanoproteomics: Methods and Protocols, ed. by S. A. Toms, R. J. Weil (Humana Press, Totowa, 2011), pp. 223–237Google Scholar
  2. 2.
    J. Wang, Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17(1), 7–14 (2005)CrossRefGoogle Scholar
  3. 3.
    J. Wang, Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens. Bioelectron. 21(10), 1887–1892 (2006)CrossRefGoogle Scholar
  4. 4.
    D. Zhang, Q. Liu, Biosensors and bioelectronics on smartphone for portable biochemical detection. Biosens. Bioelectron. 75, 273–284 (2016)CrossRefGoogle Scholar
  5. 5.
    H. Li et al., CMOS electrochemical instrumentation for biosensor microsystems: a review. Sensors 17(1), 74 (2016)CrossRefGoogle Scholar
  6. 6.
    X.-S. Zhou, E. Maisonhaute, Electrochemistry to record single events, in Electrochemistry: Volume 11 - Nanosystems Electrochemistry, vol. 11, (The Royal Society of Chemistry, UK, 2013), pp. 1–33Google Scholar
  7. 7.
    K. Zhou, J.M. Perry, S.C. Jacobson, Transport and sensing in nanofluidic devices. Annu. Rev. Anal. Chem. 4(1), 321–341 (2011)CrossRefGoogle Scholar
  8. 8.
    C. Dekker, Solid-state nanopores. Nat. Nanotechnol. 2(4), 209–215 (2007)CrossRefGoogle Scholar
  9. 9.
    J.J. Kasianowicz et al., Nanoscopic porous sensors. Annu. Rev. Anal. Chem. 1(1), 737–766 (2008)CrossRefGoogle Scholar
  10. 10.
    M. Wanunu et al., Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nat. Nanotechnol. 5(11), 807–814 (2010)CrossRefGoogle Scholar
  11. 11.
    O.K. Dudko et al., Extracting kinetics from single-molecule force spectroscopy: nanopore unzipping of DNA hairpins. Biophys. J. 92(12), 4188–4195 (2007)CrossRefGoogle Scholar
  12. 12.
    K.M. Halverson et al., Anthrax biosensor, protective antigen ion channel asymmetric blockade. J. Biol. Chem. 280(40), 34056–34062 (2005)CrossRefGoogle Scholar
  13. 13.
    D.W. Deamer, D. Branton, Characterization of nucleic acids by nanopore analysis. Acc. Chem. Res. 35(10), 817–825 (2002)CrossRefGoogle Scholar
  14. 14.
    B. Hille et al., Ion Channels of Excitable Membranes (Sinauer, Sunderland, 2001)Google Scholar
  15. 15.
    W. Asghar et al., Shrinking of solid-state nanopores by direct thermal heating. Nanoscale Res. Lett. 6(1), 372 (2011)CrossRefGoogle Scholar
  16. 16.
    J.D. Uram, K. Ke, M. Mayer, Noise and bandwidth of current recordings from Submicrometer pores and nanopores. ACS Nano 2(5), 857–872 (2008)CrossRefGoogle Scholar
  17. 17.
    J. Li et al., Ion-beam sculpting at nanometre length scales. Nature 412(6843), 166–169 (2001)CrossRefGoogle Scholar
  18. 18.
    A.J. Storm et al., Fabrication of solid-state nanopores with single-nanometre precision. Nat. Mater. 2, 537–540 (2003)CrossRefGoogle Scholar
  19. 19.
    M. Crescentini et al., Noise limits of CMOS current interfaces for biosensors: a review. IEEE Trans Biomed Circuits Syst 8(2), 278–292 (2014)CrossRefGoogle Scholar
  20. 20.
    H. Li et al., Ultracompact microwatt CMOS current readout with picoampere noise and kilohertz bandwidth for biosensor arrays. IEEE Trans Biomed Circuits Syst. 12(1), 35–46 (2018)Google Scholar
  21. 21.
    R.S. Martin et al., Recent developments in amperometric detection for microchip capillary electrophoresis. Electrophoresis 23, 3667–3677 (2002)CrossRefGoogle Scholar
  22. 22.
    A. Bhat, Stabilized TIAs key to reliable performance. Electronic Design (2011), p. 2. Available at:
  23. 23.
    J.K. Rosenstein, K.L. Shepard, Temporal resolution of nanopore sensor recordings. in 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2013), pp. 4110–4113Google Scholar
  24. 24.
    D. Wei et al., Electrochemical biosensors at the nanoscale. Lab Chip 9(15), 2123–2131 (2009)CrossRefGoogle Scholar
  25. 25.
    X. Liu, L. Li, A.J. Mason, High throughput single-ion-channel array microsystem with CMOS instrumentation. in 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2014), pp. 2765–2768Google Scholar
  26. 26.
    B. Le Pioufle et al., Lipid bilayer microarray for parallel recording of transmembrane ion currents. Anal. Chem. 80(1), 328–332 (2008)CrossRefGoogle Scholar
  27. 27.
    F. Thei et al., Parallel recording of single ion channels: a heterogeneous system approach. IEEE Trans. Nanotechnol. 9(3), 295–302 (2010)CrossRefGoogle Scholar
  28. 28.
    B. Goldstein et al., CMOS low current measurement system for biomedical applications. IEEE Trans Biomed Circuits Syst 6(2), 111–119 (2012)CrossRefGoogle Scholar
  29. 29.
    G. Ferrari et al., Transimpedance amplifier for high sensitivity current measurements on Nanodevices. IEEE J. Solid State Circuits 44(5), 1609–1616 (2009)CrossRefGoogle Scholar
  30. 30.
    P. Weerakoon et al., An integrated patch-clamp potentiostat with electrode compensation. IEEE Trans Biomed Circuits Syst 3(2), 117–125 (2009)CrossRefGoogle Scholar
  31. 31.
    P. Ciccarella et al., Integrated low-noise current amplifier for glass-based nanopore sensing. in 10th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME) (2014), pp. 1–4Google Scholar
  32. 32.
    J. Kim, K. Pedrotti, W.B. Dunbar, An area-efficient low-noise CMOS DNA detection sensor for multichannel nanopore applications. Sensors Actuators B Chem. 176, 1051–1055 (2013)CrossRefGoogle Scholar
  33. 33.
    H.M. Jafari, R. Genov, Chopper-stabilized bidirectional current acquisition circuits for electrochemical Amperometric biosensors. IEEE Trans Circuits Syst I Regul Pap 60(5), 1149–1157 (2013)MathSciNetCrossRefGoogle Scholar
  34. 34.
    M. Carminati et al., Design and characterization of a current sensing platform for silicon-based nanopores with integrated tunneling nanoelectrodes. Analog Integr. Circ. Sig. Process 77(3), 333–343 (2013)CrossRefGoogle Scholar
  35. 35.
    B.B. Haab, M.J. Dunham, P.O. Brown, Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol. 2(2), research0004.1 (2001)CrossRefGoogle Scholar
  36. 36.
    M.F. Lopez, M.G. Pluskal, Protein micro- and macroarrays: digitizing the proteome. J. Chromatogr. B 787(1), 19–27 (2003)CrossRefGoogle Scholar
  37. 37.
    X. Liu, CMOS Instrumentation for Electrochemical Biosensor Array Microsystems (Michigan State University. Electrical Engineering 2014)Google Scholar
  38. 38.
    L. Li, A. Mason, Development of an integrated CMOS-microfluidic instrumentation array for high throughput membrane protein studies. in IEEE International Symposium on Circuits and Systems (2014), pp. 638–641Google Scholar
  39. 39.
    Y. Huang, A.J. Mason, Lab-on-CMOS integration of microfluidics and electrochemical sensors. Lab Chip 13(19), 3929–3934 (2013)CrossRefGoogle Scholar
  40. 40.
    S. Parsnejad, H. Li, A.J. Mason, Compact CMOS amperometric readout for nanopore arrays in high throughput lab-on-CMOS. in Proceedings – IEEE International Symposium on Circuits and Systems (2016) July, pp. 2851–2854Google Scholar
  41. 41.
    S. Ayers et al., Design of a CMOS Potentiostat circuit for electrochemical detector arrays. IEEE Trans Circuits Syst I Regul Pap 54(4), 736–744 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Michihan State University College of Electrical and Computer EngineeringEast LansingUSA

Personalised recommendations