Skip to main content

Organic Nanomaterials: Liposomes, Albumin, Dendrimer, Polymeric Nanoparticles

  • Chapter
  • First Online:

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Organic nanoparticles (NPs) as a drug delivery system have a relative long history of development and many of them are now approved for commercial use. The nano-carrier used for drug delivery should be eliminated from the body, either by degradation or by excretion. While many inorganic nano-carriers are very stable and difficult to metabolize, many of organic NPs are biodegradable. Radiolabeling of biomolecules enables tracing these molecules in vivo. Biodistribution and autoradiography studies validate tissue distribution of the nano-carriers in animals. Nuclear medicine imaging such as single photon emission computed tomography (SPECT) or positron emission tomography (PET) allows non-invasive longitudinal monitoring of the in vivo pharmacokinetics and tissue distribution of the nano-carriers even in human subjects. In vivo tracking of nano-carriers using radionuclide imaging techniques enables a theranostic approach as well, not just being a drug carrier. The combination of diagnostic and therapeutic capabilities in a single drug delivery system can be used for precision personalized therapies. In this chapter, we dealt with four different groups of biodegradable organic NPs and their radiolabeled forms: liposomes, albumin-based nanoparticles, dendrimers, and polymeric nanoparticles.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. G. Romero, S. Moya, Synthesis of organic nanoparticles, in Nanobiotechnology: Inorganic Nanoparticles vs Organic Nanoparticles, ed. by J. de la Fuente, V. Grazu (Elsevier, Amsterdam, 2012), pp. 115–141

    Chapter  Google Scholar 

  2. M. Li, K.T. Al-Jamal, K. Kostarelos, J. Reineke, Physiologically based pharma-cokinetic modeling of nanoparticles. ACS Nano 4, 6303–6317 (2010)

    Article  Google Scholar 

  3. A.D. Bangham, M.M. Standish, J.C. Watkins, Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol. 13, 238–252 (1965)

    Article  Google Scholar 

  4. K. Maruyama, Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects. Adv. Drug Deliv. Rev. 63, 161–169 (2011)

    Article  Google Scholar 

  5. L. Sercombe, T. Veerati, F. Moheimani, S.Y. Wu, A.K. Sood, S. Hua, Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 6, 286 (2015)

    Article  Google Scholar 

  6. T. van der Geest, P. Laverman, J.M. Metselaar, G. Storm, O.C. Boerman, Radionuclide imaging of liposomal drug delivery. Expert Opin. Drug Deliv. 13(9), 1231–1242 (2016)

    Article  Google Scholar 

  7. D. Liu, A. Mori, L. Huang, Role of liposome size and RES blockade in controlling biodistribution and tumor uptake of GM1-containing liposomes. Biochim. Biophys. Acta 1104, 95–101 (1992)

    Article  Google Scholar 

  8. X. Yan, G.L. Scherphof, J.A. Kamps, Liposome opsonization. J. Liposome Res. 15(1–2), 109–139 (2005)

    Article  Google Scholar 

  9. Y. Barenholz, Doxil®–the first FDA-approved nano-drug: lessons learned. J. Control Release. 160(2), 117–134 (2012)

    Article  Google Scholar 

  10. W.T. Phillips, B.A. Goins, A. Bao, Radioactive liposomes. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1(1), 69–83 (2009)

    Article  Google Scholar 

  11. G.M. Jensen, T.H. Bunch, Conventional liposome performance and evaluation: lessons from the development of Vescan. J. Liposome Res. 17, 121–137 (2007)

    Article  Google Scholar 

  12. A. Srivatsan, X. Chen, Recent advances in nanoparticle-based nuclear imaging of cancers. Adv. Cancer Res. 124, 83–129 (2014)

    Article  Google Scholar 

  13. A.L. Petersen, A.E. Hansen, A. Gabizon, T.L. Andresen, Liposome imaging agents in personalized medicine. Adv. Drug Deliv. Rev. 64(13), 1417–1435 (2012)

    Article  Google Scholar 

  14. A. Gabizon, R. Chisin, S. Amselem, S. Druckmann, R. Cohen, D. Goren et al., Pharmacokinetic and imaging studies in patients receiving a formulation of liposome-associated adriamycin. Br. J. Cancer 64(6), 1125–1132 (1991)

    Article  Google Scholar 

  15. J.R. Morgan, K.E. Williams, R.L. Davies, K. Leach, M. Thomson, L.A. Williams, Localisation of experimental staphylococcal abscesses by 99mTc-technetium-labelled liposomes. J. Med. Microbiol. 14(2), 213–217 (1981)

    Article  Google Scholar 

  16. E. Andreozzi, J.W. Seo, K. Ferrara, A. Louie, Novel method to label solid lipid nanoparticles with 64Cu for positron emission tomography imaging. Bioconjug. Chem. 22(4), 808–818 (2011)

    Article  Google Scholar 

  17. A.L. Petersen, T. Binderup, P. Rasmussen, J.R. Henriksen, D.R. Elema, A. Kjær et al., 64Cu loaded liposomes as positron emission tomography imaging agents. Biomaterials 32(9), 2334–2341 (2011)

    Article  Google Scholar 

  18. R.T. Proffitt, L.E. Williams, C.A. Presant, G.W. Tin, J.A. Uliana, R.C. Gamble et al., Tumor-imaging potential of liposomes loaded with In-111-NTA: biodistribution in mice. J. Nucl. Med. 24(1), 45–51 (1983)

    Google Scholar 

  19. L.G. Espinola, J. Beaucaire, A. Gottschalk, V.J. Caride, Radiolabeled liposomes as metabolic and scanning tracers in mice. II. In-111 oxine compared with Tc-99 m DTPA, entrapped in multilamellar lipid vesicles. J. Nucl. Med. 20(5), 434–440 (1979)

    Google Scholar 

  20. A.F. Turner, C.A. Presant, R.T. Proffitt, L.E. Williams, D.W. Winsor, J.L. Werner, In-111-labeled liposomes: dosimetry and tumor depiction. Radiology 166(3), 761–765 (1988)

    Article  Google Scholar 

  21. K.J. Harrington, S. Mohammadtaghi, P.S. Uster, D. Glass, A.M. Peters, R.G. Vile et al., Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled PEGylated liposomes. Clin. Cancer Res. 7(2), 243–254 (2001)

    Google Scholar 

  22. E.T. Dams, W.J. Oyen, O.C. Boerman, G. Storm, P. Laverman, P.J. Kok et al., 99mTc-PEG liposomes for the scintigraphic detection of infection and inflammation: clinical evaluation. J. Nucl. Med. 41(4), 622–630 (2000)

    Google Scholar 

  23. B.D. Williams, M.M. O’Sullivan, G.S. Saggu, K.E. Williams, L.A. Williams, J.R. Morgan, Synovial accumulation of technetium labelled liposomes in rheumatoid arthritis. Ann. Rheum. Dis. 46(4), 314–318 (1987)

    Article  Google Scholar 

  24. N. Li, Z. Yu, T.T. Pham, P.J. Blower, R. Yan, A generic 89Zr labeling method to quantify the in vivo pharmacokinetics of liposomal nanoparticles with positron emission tomography. Int. J. Nanomedicine. 12, 3281–3294 (2017)

    Article  Google Scholar 

  25. L.T. Lin, C.H. Chang, H.L. Yu, R.S. Liu, H.E. Wang, S.J. Chiu et al., Evaluation of the therapeutic and diagnostic effects of PEGylated liposome-embedded 188Re on human non-small cell lung cancer using an orthotopic small-animal model. J. Nucl. Med. 55(11), 1864–1870 (2014)

    Article  Google Scholar 

  26. M. Lingappa, H. Song, S. Thompson, F. Bruchertseifer, A. Morgenstern, G. Sgouros, Immunoliposomal delivery of 213Bi for alpha-emitter targeting of metastatic breast cancer. Cancer Res. 70(17), 6815–6823 (2010)

    Article  Google Scholar 

  27. P.J. Theodore, All About Albumin (Elsevier, Amsterdam, 1995)

    Google Scholar 

  28. K.M. Sand, M. Bern, J. Nilsen, H.T. Noordzij, I. Sandlie, J.T. Andersen, Unrav-eling the interaction between FcRn and albumin: opportunities for design of albumin-based therapeutics. Front. Immunol. 5, 682 (2015)

    Article  Google Scholar 

  29. Y. Matsumura, H. Maeda, A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387–6392 (1986)

    Google Scholar 

  30. C.R. Divgi, N.M. Lisann, S.D. Yeh, R.S. Benua, Technetium-99m albumin scintigraphy in the diagnosis of protein-losing enteropathy. J. Nucl. Med. 27(11), 1710–2 (1986)

    Google Scholar 

  31. D.W. Nyman, K.J. Campbell, E. Hersh, K. Long, K. Richardson, V. Trieu, N. Desai, M.J. Hawkins, D.D. Von Hoff, Phase I and pharmacokinetics trial of ABI-007, a novel nanoparticle formulation of paclitaxel in patients with advanced non-hematologic malignancies. J. Clin. Oncol. 23(31), 7785–7793 (2005)

    Article  Google Scholar 

  32. A.M. Merlot, D.S. Kalinowski, D.R. Richardson, Unraveling the mysteries of serum albumin-more than just a serum protein. Front Physiol. 5, 299 (2014)

    Article  Google Scholar 

  33. R. Kloiber, B. Damtew, L. Rosenthall, A crossover study comparing the effect of particle size on the distribution of radiocolloid in patients. Clin. Nucl. Med. 6(5), 204–206 (1981)

    Article  Google Scholar 

  34. M.G. Persico, L. Lodola, F.E. Buroni, M. Morandotti, P. Pallavicini, C. Aprile, 99mTc-human serum albumin nanocolloids: particle sizing and radioactivity distribution. J. Label. Comp. Radiopharm. 58(9), 376–382 (2015)

    Article  Google Scholar 

  35. L. Tian, Q. Chen, X. Yi, G. Wang, J. Chen, P. Ning et al., Radionuclide I-131 labeled Albumin-Paclitaxel nanoparticles for synergistic combined chemo-radioisotope therapy of cancer. Theranostics 7(3), 614–623 (2017)

    Article  Google Scholar 

  36. O. Jacobson, D.O. Kiesewetter, X. Chen, Albumin-binding Evans Blue derivatives for diagnostic imaging and production of long-acting therapeutics. Bioconjug. Chem. 27, 2239–2247 (2016)

    Article  Google Scholar 

  37. D.A. Tomalia, H. Baker, J.R. Dewald, M. Hall, G. Kallos, S. Martin, A new class of polymers: starburst-dendritic macromolecules. Polym. J. 9(1), 117–132 (1985)

    Article  Google Scholar 

  38. A.R. Menjoge, R.M. Kannan, D.A. Tomalia, Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov. Today. 15, 171–185 (2010)

    Article  Google Scholar 

  39. C.F. Price, D. Tyssen, S. Sonza, A. Davie, S. Evans, G.R. Lewis et al., SPL7013 Gel (VivaGel®) retains potent HIV-1 and HSV-2 inhibitory activity following vaginal administration in humans. PLoS ONE 6(9), e24095 (2011)

    Article  ADS  Google Scholar 

  40. N. Malik, R. Wiwattanapatapee, R. Klopsch, K. Lorenz, H. Frey, J.W. Weener et al., Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J. Control Release. 65, 133–148 (2000)

    Article  Google Scholar 

  41. K. Jain, P. Kesharwani, U. Gupta, N.K. Jain, Dendrimer toxicity: let’s meet the challenge. Int. J. Pharm. 394, 122–142 (2010)

    Article  Google Scholar 

  42. V. Biricová, A. Lázničková, M. Lázníček, M. Polášek, P. Hermann, Radio-labeling of PAMAM dendrimers conjugated to a pyridine-N-oxide DOTA analog with 111In: optimization of reaction conditions and biodistribution. J. Pharm. Biomed. Anal. 56(3), 505–512 (2011)

    Article  Google Scholar 

  43. L.M. Kaminskas, B.J. Boyd, P. Karellas, G.Y. Krippner, R. Lessene, B. Kelly, C.J. Porter, The impact of molecular weight and PEG chain length on the systemic pharmacokinetics of PEGylated poly l-lysine dendrimers. Mol. Pharm. 5(3), 449–463 (2008)

    Article  Google Scholar 

  44. J.W. Seo, H. Baek, L.M. Mahakian, J. Kusunose, J. Hamzah, E. Ruoslahti et al., 64Cu-labeled LyP-1-dendrimer for PET-CT imaging of atherosclerotic plaque. Bioconjug. Chem. 25(2), 231–239 (2014)

    Article  Google Scholar 

  45. J. Hamzah, V.R. Kotamraju, J.W. Seo, L. Agemy, V. Fogal, L.M. Mahakian et al., Specific penetration and accumulation of a homing peptide within atherosclerotic plaques of apolipo-protein E-deficient mice. Proc. Natl. Acad. Sci. U S A. 108(17), 7154–7159 (2011)

    Article  ADS  Google Scholar 

  46. B.P. Gray, S. Li, K.C. Brown, From phage display to nanoparticle delivery: functionalizing liposomes with multivalent peptides improves targeting to a cancer biomarker. Bioconjug. Chem. 24(1), 85–96 (2013)

    Article  Google Scholar 

  47. L. Kovacs, M. Tassano, M. Cabrera, C.B. Zamboni, M. Fernández, R.M. Anjos et al., Development of 177Lu-DOTA-dendrimer and determination of its effect on metal and ion levels in tumor tissue. Cancer Biother. Radiopharm. 30(10), 405–409 (2015)

    Article  Google Scholar 

  48. L. Zhao, J. Zhu, Y. Cheng, Z. Xiong, Y. Tang, L. Guo et al., Chlorotoxin-conjugated multifunctional dendrimers labeled with radionuclide 131I for single photon emission computed tomography imaging and radiotherapy of gliomas. ACS Appl. Mater. Interfaces. 7(35), 19798–19808 (2015)

    Article  Google Scholar 

  49. G. Yang, N. Sadeg, H. Belhadj-Tahar, New potential in situ anticancer agent derived from [188Re]rhenium nitro-imidazole ligand loaded 5th generation poly-l-lysine dendrimer for treatment of transplanted human liver carcinoma in nude mice. Drug Des. 6, 144 (2017)

    Article  Google Scholar 

  50. C.P. Reis, R.J. Neufeld, A.J. Ribeiro, F. Veiga, Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine 2, 8 (2006)

    Article  Google Scholar 

  51. I.H. Park, J.H. Sohn, S.B. Kim, K.S. Lee, J.S. Chung, S.H. Lee et al., An open-label, randomized, parallel, phase III trial evaluating the efficacy and safety of polymeric micelle-formulated paclitaxel compared to conventional Cremophor EL-based paclitaxel for recurrent or metastatic HER2-negative breast cancer. Cancer Res. Treat. 49(3), 569–577 (2017)

    Article  Google Scholar 

  52. J. Shi, P.W. Kantoff, R. Wooster, O.C. Farokhzad, Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 17(1), 20–37 (2017)

    Article  Google Scholar 

  53. D.E. Owens 3rd, N.A. Peppas, Opsonization, biodistribution, and pharmaco-kinetics of polymeric nanoparticles. Int. J. Pharm. 307(1), 93–102 (2006)

    Article  Google Scholar 

  54. E.D. Pressly, R. Rossin, A. Hagooly, K. Fukukawa, B.W. Messmore, M.J. Welch et al., Structural effects on the biodistribution and positron emission tomography (PET) imaging of well-defined 64Cu-labeled nanoparticles comprised of amphiphilic block graft copolymers. Biomacromol 8(10), 3126–3134 (2007)

    Article  Google Scholar 

  55. R. Toita, Y. Kanai, H. Watabe, K. Nakao, S. Yamamoto, J. Hatazawa et al., Biodistribution of 125I-labeled polymeric vaccine carriers after subcutaneous injection. Bioorg. Med. Chem. 21(17), 5310–5315 (2013)

    Article  Google Scholar 

  56. J. You, J. Zhao, X. Wen, C. Wu, Q. Huang, F. Guan et al., Chemoradiation therapy using cyclopamine-loaded liquid-lipid nanoparticles and lutetium-177-labeled core-crosslinked polymeric micelles. J. Control Release. 202, 40–48 (2015)

    Article  Google Scholar 

  57. B. Fonseca-Santos, M. Chorilli, An overview of carboxymethyl derivatives of chitosan: their use as biomaterials and drug delivery systems. Mater. Sci. Eng. C Mater. Biol. Appl. 77, 1349–1362 (2017)

    Article  Google Scholar 

  58. I. Wedmore, J.G. McManus, A.E. Pusateri, J.B. Holcomb, J. Trauma, A special report on the chitosan-based hemostatic dressing: experience in current combat operations. J. Trauma 60(3), 655–658 (2006)

    Article  Google Scholar 

  59. D.E. Lee, J.H. Na, S. Lee, C.M. Kang, H.N. Kim, S.J. Han et al., Facile method to radiolabel glycol chitosan nanoparticles with 64Cu via copper-free click chemistry for microPET imaging. Mol. Pharm. 10(6), 2190–8 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keon Wook Kang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kang, K.W., Song, M.G. (2018). Organic Nanomaterials: Liposomes, Albumin, Dendrimer, Polymeric Nanoparticles. In: Lee, D. (eds) Radionanomedicine. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-67720-0_5

Download citation

Publish with us

Policies and ethics