Skip to main content

Innate Immunity to Nanomaterials

  • Chapter
  • First Online:
Book cover Radionanomedicine

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Nanomaterials, if injected to the body systemically, will meet circulating innate immune mediators first and then tissue-resident macrophages. In this chapter, the recent development of the understanding of the innate immunity, mostly the origin and contribution of tissue-resident macrophages was explained. Interestingly, recently tissue-resident macrophages, major player of innate immunity are not derived from circulating monocyte, especially in liver. Tissue resident-macrophages, which are in non-activated state and will act as first-hand gatekeeper to respond to the injected nanomaterials. This innate immunity has the capability of memory and trainability , which means on the second injection, the degree of response will be higher. This trained innate immunity is now known to be meditated by epigenetic modification. Accelerated blood clearance is the minor and benign aftereffect of the action of innate immune response and the activation of pentraxin and complement system or provocation of humoral or cellular adaptive immune response is the consequential aftereffect of immune responses to the nanomaterials. The differentiation between innate and adaptive immunity lies in the presence or absence of involvement of major histocompatibility (MHC) molecules and of V(D)J recombination in effector cells and molecules (Immunoglobulins or T cell receptors). As is expected, circulation physiology predates immune response and thus one can refer to the anatomy of liver and spleen detailed in the chapter to predict the fate and final disposal of injected nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L.L. Lanier, Shades of grey–the blurring view of innate and adaptive immunity. Nat. Rev. Immunol. 13(2), 73–74 (2013)

    Article  Google Scholar 

  2. E. Vivier, D.H. Raulet, A. Moretta, M.A. Caligiuri, L. Zitvogel, L.L. Lanier et al., Innate or adaptive immunity? The example of natural killer cells. Science 331(6013), 44–49 (2011)

    Article  ADS  Google Scholar 

  3. M.G. Netea, L.A. Joosten, E. Latz, K.H. Mills, G. Natoli, H.G. Stunnenberg et al., Trained immunity: a program of innate immune memory in health and disease. Science 352(6284), aaf1098 (2016)

    Article  Google Scholar 

  4. A. Doni, C. Garlanda, A. Mantovani, Innate immunity, hemostasis and matrix remodeling: PTX3 as a link. Semin. Immunol. 28(6), 570–577 (2016)

    Article  Google Scholar 

  5. X. Cao, Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease. Nat. Rev. Immunol. 16(1), 35–50 (2016)

    Article  Google Scholar 

  6. S.Y. Seong, P. Matzinger, Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat. Rev. Immunol. 4(6), 469–478 (2004)

    Article  Google Scholar 

  7. D. Gao, W. Li, Structures and recognition modes of toll-like receptors. Proteins 85(1), 3–9 (2017)

    Article  Google Scholar 

  8. N. Nakamoto, T. Kanai, Role of toll-like receptors in immune activation and tolerance in the liver. Front. Immunol. 5, 221 (2014)

    Article  Google Scholar 

  9. J.D. Jones, R.E. Vance, J.L. Dangl, Intracellular innate immune surveillance devices in plants and animals. Science 354(6316), 1117 (2016)

    Article  Google Scholar 

  10. J. Zhu, W.E. Paul, CD4 T cells: fates, functions, and faults. Blood 112(5), 1557–1569 (2008)

    Article  Google Scholar 

  11. S. Nakayamada, H. Takahashi, Y. Kanno, J.J. O’Shea, Helper T cell diversity and plasticity. Curr. Opin. Immunol. 24(3), 297–302 (2012)

    Article  Google Scholar 

  12. M. Guilliams, F. Ginhoux, C. Jakubzick, S.H. Naik, N. Onai, B.U. Schraml et al., Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat. Rev. Immunol. 14(8), 571–578 (2014)

    Article  Google Scholar 

  13. H. Spits, D. Artis, M. Colonna, A. Diefenbach, J.P. Di Santo, G. Eberl et al., Innate lymphoid cells—a proposal for uniform nomenclature. Nat. Rev. Immunol. 13(2), 145–149 (2013)

    Article  Google Scholar 

  14. K. Juelke, C. Romagnani, Differentiation of human innate lymphoid cells (ILCs). Curr. Opin. Immunol. 38, 75–85 (2016)

    Article  Google Scholar 

  15. Y. Jiao, N.D. Huntington, G.T. Belz, C. Seillet, Type 1 innate lymphoid cell biology: lessons learnt from natural killer cells. Front. Immunol. 7, 426 (2016)

    Article  Google Scholar 

  16. D.I. Godfrey, S. Stankovic, A.G. Baxter, Raising the NKT cell family. Nat. Immunol. 11(3), 197–206 (2010)

    Article  Google Scholar 

  17. L. Ziegler-Heitbrock, P. Ancuta, S. Crowe, M. Dalod, V. Grau, D.N. Hart, P.J. Leenen et al., Nomenclature of monocytes and dendritic cells in blood. Blood 116(16), e74–e80 (2010)

    Article  Google Scholar 

  18. S. Yona, K.W. Kim, Y. Wolf, A. Mildner, D. Varol, M. Breker et al., Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38(1), 79–91 (2013)

    Article  Google Scholar 

  19. E. Gomez Perdiguero, K. Klapproth, C. Schulz, K. Busch, E. Azzoni, L. Crozet et al., Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518(7540), 547–551 (2015)

    Article  ADS  Google Scholar 

  20. F. Ginhoux, J.L. Schultze, P.J. Murray, J. Ochando, S.K. Biswas, New insights into the multidimensional concept of macrophage ontogeny, activation and function. Nat. Immunol. 17(1), 34–40 (2016)

    Article  Google Scholar 

  21. F. Ginhoux, S. Jung, Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat. Rev. Immunol. 14(6), 392–404 (2014)

    Article  Google Scholar 

  22. E. Mass, I. Ballesteros, M. Farlik, F. Halbritter, P. Günther, L. Crozet et al., Specification of tissue-resident macrophages during organogenesis. Science 353(6304), aaf4238 (2016)

    Article  Google Scholar 

  23. C. Ju, F. Tacke, Hepatic macrophages in homeostasis and liver diseases: from pathogenesis to novel therapeutic strategies. Cell. Mol. Immunol. 13(3), 316–327 (2016)

    Article  Google Scholar 

  24. L.J. Dixon, M. Barnes, H. Tang, M.T. Pritchard, L.E. Nagy, Kupffer cells in the liver. Compr. Physiol. 3(2), 785–797 (2013)

    Google Scholar 

  25. J. Jager, M. Aparicio-Vergara, M. Aouadi, Liver innate immune cells and insulin resistance: the multiple facets of Kupffer cells. J. Intern. Med. 280(2), 209–220 (2016)

    Article  Google Scholar 

  26. O. Krenkel, F. Tacke, Liver macrophages in tissue homeostasis and disease. Nat. Rev. Immunol. 17(5), 306–321 (2017)

    Article  Google Scholar 

  27. L.C. Davies, S.J. Jenkins, J.E. Allen, P.R. Taylor, Tissue-resident macrophages. Nat. Immunol. 14(10), 986–995 (2013)

    Article  Google Scholar 

  28. D. Hashimoto, A. Chow, C. Noizat, P. Teo, M.B. Beasley, M. Leboeuf et al., Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38(4), 792–804 (2013)

    Article  Google Scholar 

  29. M.C. Lee, J.-K. Chung, D.S. Lee, Koh Chang-Soon Nuclear Medicine (Korea Medical Books, Seoul Korea, 2008)

    Google Scholar 

  30. C.Z. Han, I.J. Juncadella, J.M. Kinchen, M.W. Buckley, A.L. Klibanov, K. Dryden et al., Macrophages redirect phagocytosis by non-professional phagocytes and influence inflammation. Nature 539(7630), 570–574 (2016)

    Article  Google Scholar 

  31. P.L. Rodriguez, T. Harada, D.A. Christian, D.A. Pantano, R.K. Tsai, D.E. Discher, Minimal “Self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 339(6122), 971–975 (2013)

    Article  ADS  Google Scholar 

  32. S.W. Jones, R.A. Roberts, G.R. Robbins, J.L. Perry, M.P. Kai, K. Chen et al., Nanoparticle clearance is governed by Th1/Th2 immunity and strain background. J. Clin. Invest. 123(7), 3061–3073 (2013)

    Article  Google Scholar 

  33. Z.G. Estephan, P.S. Schlenoff, J.B. Schlenoff, Zwitteration as an alternative to PEGylation. Langmuir 27(11), 6794–6800 (2011)

    Article  Google Scholar 

  34. Z. Amoozgar, Y. Yeo, Recent advances in stealth coating of nanoparticle drug delivery systems. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 4(2), 219–233 (2012)

    Article  Google Scholar 

  35. S. Mondini, M. Leonzino, C. Drago, A.M. Ferretti, S. Usseglio, D. Maggioni et al., Zwitterion-coated iron oxide nanoparticles: surface chemistry and intracellular uptake by hepatocarcinoma (HepG2) cells. Langmuir 31(26), 7381–7390 (2015)

    Article  Google Scholar 

  36. T. Cedervall, I. Lynch, S. Lindman, T. Berggård, E. Thulin, H. Nilsson et al., Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. USA 104(7), 2050–2055 (2007)

    Article  ADS  Google Scholar 

  37. M. Lundqvist, J. Stigler, G. Elia, I. Lynch, T. Cedervall, K.A. Dawson, Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. USA 105(38), 14265–14270 (2008)

    Article  ADS  Google Scholar 

  38. P. Aggarwal, J.B. Hall, C.B. McLeland, M.A. Dobrovolskaia, S.E. McNeil, Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv. Drug Deliv. Rev. 61(6), 428–437 (2009)

    Article  Google Scholar 

  39. S. Milani, F.B. Bombelli, A.S. Pitek, K.A. Dawson, J. Rädler, Reversible versus irreversible binding of transferrin to polystyrene nanoparticles: soft and hard corona. ACS Nano. 6(3), 2532–2541 (2012)

    Article  Google Scholar 

  40. P.M. Kelly, C. Åberg, E. Polo, A. O’Connell, J. Cookman, J. Fallon et al., Mapping protein binding sites on the biomolecular corona of nanoparticles. Nat. Nanotechnol. 10(5), 472–479 (2015)

    Article  ADS  Google Scholar 

  41. A. Lesniak, F. Fenaroli, M.P. Monopoli, C. Åberg, K.A. Dawson, A. Salvati, Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano. 6(7), 5845–5857 (2012)

    Article  Google Scholar 

  42. A. Salvati, A.S. Pitek, M.P. Monopoli, K. Prapainop, F.B. Bombelli, D.R. Hristov et al., Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol. 8(2), 137–143 (2013)

    Article  ADS  Google Scholar 

  43. M.P. Monopoli, C. Aberg, A. Salvati, K.A. Dawson, Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 7(12), 779–786 (2012)

    Article  ADS  Google Scholar 

  44. S. Schöttler, K. Landfester, V. Mailänder, Controlling the stealth effect of nanocarriers through understanding the protein corona. Angew. Chem. Int. Ed. Engl. 55(31), 8806–8815 (2016)

    Article  Google Scholar 

  45. M. Cataldi, C. Vigliotti, T. Mosca, M. Cammarota, D. Capone, Emerging role of the spleen in the pharmacokinetics of monoclonal antibodies, nanoparticles and exosomes. Int. J. Mol. Sci. 18(6), E1249 (2017)

    Article  Google Scholar 

  46. W. Wang, E.Q. Wang, J.P. Balthasar, Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin. Pharmacol. Ther. 84(5), 548–558 (2008)

    Article  Google Scholar 

  47. D.C. Roopenian, S. Akilesh, FcRn: the neonatal Fc receptor comes of age. Nat. Rev. Immunol. 7(9), 715–725 (2007)

    Article  Google Scholar 

  48. J.L. Perry, K.G. Reuter, M.P. Kai, K.P. Herlihy, S.W. Jones, J.C. Luft et al., PEGylated PRINT nanoparticles: the impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics. Nano Lett. 12(10), 5304–5310 (2012)

    Article  ADS  Google Scholar 

  49. A.S. Abu Lila, H. Kiwada, T. Ishida, The accelerated blood clearance (ABC) phenomenon: clinical challenge and approaches to manage. J. Control Release 172(1), 38–47 (2013)

    Article  Google Scholar 

  50. T. Shimizu, T. Ishida, H. Kiwada, Transport of PEGylated liposomes from the splenic marginal zone to the follicle in the induction phase of the accelerated blood clearance phenomenon. Immunobiology 218(5), 725–732 (2013)

    Article  Google Scholar 

  51. S. Shi, Biologics: an update and challenge of their pharmacokinetics. Curr. Drug Metab. 15(3), 271–290 (2014)

    Article  Google Scholar 

  52. J.W. Lee, ADME of monoclonal antibody biotherapeutics: knowledge gaps and emerging tools. Bioanalysis 5(16), 2003–2014 (2013)

    Article  Google Scholar 

  53. P. Chames, M. Van Regenmortel, E. Weiss, D. Baty, Therapeutic antibodies: successes, limitations and hopes for the future. Br. J. Pharmacol. 157(2), 220–233 (2009)

    Article  Google Scholar 

  54. J.D. Gómez-Mantilla, I.F. Trocóniz, Z. Parra-Guillén, M.J. Garrido, Review on modeling anti-antibody responses to monoclonal antibodies. J. Pharmacokinet Pharmacodyn. 41(5), 523–536 (2014)

    Article  Google Scholar 

  55. A. Kuriakose, N. Chirmule, P. Nair, Immunogenicity of biotherapeutics: causes and association with posttranslational modifications. J. Immunol. Res. 2016, 1298473 (2016)

    Article  Google Scholar 

  56. H.B. da Silva, R. Fonseca, R.M. Pereira, A. Cassado Ados, J.M. Álvarez, M.R. D’Império Lima, Splenic macrophage subsets and their function during blood-borne infections. Front Immunol. 6, 480 (2015)

    Google Scholar 

  57. Y.K. Lee, J.M. Jeong, L. Hoigebazar, B.Y. Yang, Y.S. Lee, B.C. Lee et al., Nanoparticles modified by encapsulation of ligands with a long alkyl chain to affect multispecific and multimodal imaging. J. Nucl. Med. 53(9), 1462–1470 (2012)

    Article  Google Scholar 

  58. H.J. Seo, S.H. Nam, H.J. Im, J.Y. Park, J.Y. Lee, B. Yoo et al., Rapid hepatobiliary excretion of micelle-encapsulated/radiolabeled upconverting nanoparticles as an integrated form. Sci. Rep. 5, 15685 (2015)

    Article  ADS  Google Scholar 

  59. A. Nagao, A.S. Abu Lila, T. Ishida, H. Kiwada, Abrogation of the accelerated blood clearance phenomenon by SOXL regimen: promise for clinical application. Int. J. Pharm. 441(1–2), 395–401 (2013)

    Article  Google Scholar 

  60. J. Wang, S. Iyer, P.J. Fielder, J.D. Davis, R. Deng, Projecting human pharmacokinetics of monoclonal antibodies from nonclinical data: comparative evaluation of prediction approaches in early drug development. Biopharm. Drug Dispos. 37(2), 51–65 (2016)

    Article  Google Scholar 

  61. A.V. Kamath, Translational pharmacokinetics and pharmacodynamics of monoclonal antibodies. Drug Discov. Today Technol. 21–22, 75–83 (2016)

    Article  Google Scholar 

  62. G. Proetzel, D.C. Roopenian, Humanized FcRn mouse models for evaluating pharmacokinetics of human IgG antibodies. Methods 65(1), 148–153 (2014)

    Article  Google Scholar 

  63. A.M. Wu, Engineered antibodies for molecular imaging of cancer. Methods 65(1), 139–147 (2014)

    Article  Google Scholar 

  64. L.E. Lamberts, S.P. Williams, A.G. Terwisscha van Scheltinga, M.N. Lub-de Hooge, C.P. Schröder et al., Antibody positron emission tomography imaging in anticancer drug development. J. Clin. Oncol. 33(13), 1491–1504 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Soo Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, D.S., Shin, Y.K. (2018). Innate Immunity to Nanomaterials. In: Lee, D. (eds) Radionanomedicine. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-67720-0_21

Download citation

Publish with us

Policies and ethics