Skip to main content

Excretion and Clearance

  • Chapter
  • First Online:

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

The nanomaterials administered to the body systems are cleared, degraded and finally excreted from the body. After the initial interaction of administered nanomaterials with the body systems, clearance/excretion process of the nanomaterials is started. Mononuclear phagocytic system clears nanomaterials from the circulation by sequestering them and hepatobiliary and renal excretion works thereafter. Considering the possible toxicity of nanomaterials, controlling the clearance and excretion of injected nanomaterials are mandatory. All the factors affecting clearance and excretion have veen investigated systematically and partially established. In this chapter, we describe the physiology of clearance and excretion, and factors affecting them. Designing better nanomaterials should be based on the thorough knowledge about this physiology of nanomaterials and radionanomaterials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. S. Wilhelm, A.J. Tavares, Q. Dai, S. Ohta, J. Audet, H.F. Dvorak et al., Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016)

    Article  ADS  Google Scholar 

  2. J. Xu, C. Peng, M. Yu, J. Zheng, Renal clearable noble metal nanoparticles: photoluminescence, elimination, and biomedical applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 9, 5 (2017)

    Article  Google Scholar 

  3. E.B. Ehlerding, F. Chen, W. Cai, Biodegradable and renal clearable inorganic nanoparticles. Adv. Sci. (Weinh.) 3(2), 1500223 (2016)

    Article  Google Scholar 

  4. H.S. Choi, W. Liu, P. Misra, E. Tanaka, J.P. Zimmer, B. Itty Ipe et al., Renal clearance of quantum dots. Nat. Biotechnol. 25(10), 1165–1170 (2007)

    Article  Google Scholar 

  5. H.S. Choi, W. Liu, F. Liu, K. Nasr, P. Misra, M.G. Bawendi et al., Design considerations for tumour-targeted nanoparticles. Nat Nano. 5(1), 42–47 (2010)

    Article  Google Scholar 

  6. C. Zhou, M. Long, Y. Qin, X. Sun, J. Zheng, Luminescent gold nanoparticles with efficient renal clearance. Angew. Chem. Int. Ed. Engl. 50(14), 3168–3172 (2011)

    Article  Google Scholar 

  7. C. Zhou, G. Hao, P. Thomas, J. Liu, M. Yu, S. Sun et al., Near-infrared emitting radioactive gold nanoparticles with molecular pharmacokinetics. Angew. Chem. Int. Ed. Engl. 51(40), 10118–10122 (2012)

    Article  Google Scholar 

  8. C. Alric, I. Miladi, D. Kryza, J. Taleb, F. Lux, R. Bazzi et al., The biodistribution of gold nanoparticles designed for renal clearance. Nanoscale 5(13), 5930–5939 (2013)

    Article  ADS  Google Scholar 

  9. F. Chen, S. Goel, R. Hernandez, S.A. Graves, S. Shi, R.J. Nickles et al., Dynamic positron emission tomography imaging of renal clearable gold nanoparticles. Small 12(20), 2775–2782 (2016)

    Article  Google Scholar 

  10. C. Zhang, C. Li, Y. Liu, J. Zhang, C. Bao, S. Liang et al., Gold nanoclusters-based nanoprobes for simultaneous fluorescence imaging and targeted photodynamic therapy with superior penetration and retention behavior in tumors. Adv. Funct. Mater. 25(8), 1314–1325 (2015)

    Article  Google Scholar 

  11. A.A. Burns, J. Vider, H. Ow, E. Herz, O. Penate-Medina, M. Baumgart et al., Fluorescent silica nanoparticles with efficient urinary excretion for nanomedicine. Nano Lett. 9(1), 442–448 (2009)

    Article  ADS  Google Scholar 

  12. M. Benezra, O. Penate-Medina, P.B. Zanzonico, D. Schaer, H. Ow, A. Burns et al., Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J. Clin. Invest. 121(7), 2768–2780 (2011)

    Article  Google Scholar 

  13. H. Chen, G.D. Wang, W. Tang, T. Todd, Z. Zhen, C. Tsang et al., Gd-encapsulated carbonaceous dots with efficient renal clearance for magnetic resonance imaging. Adv. Mater. 26(39), 6761–6766 (2014)

    Article  Google Scholar 

  14. J.-H. Park, L. Gu, G. von Maltzahn, E. Ruoslahti, S.N. Bhatia, M.J. Sailor, Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat. Mater. 8(4), 331–336 (2009)

    Article  ADS  Google Scholar 

  15. A. Ruggiero, C.H. Villa, E. Bander, D.A. Rey, M. Bergkvist, C.A. Batt et al., Paradoxical glomerular filtration of carbon nanotubes. Proc. Natl. Acad. Sci. U.S.A. 107(27), 12369–12374 (2010)

    Article  ADS  Google Scholar 

  16. L. Lacerda, M.A. Herrero, K. Venner, A. Bianco, M. Prato, K. Kostarelos, Carbon-nanotube shape and individualization critical for renal excretion. Small 4(8), 1130–1132 (2008)

    Article  Google Scholar 

  17. E. Phillips, O. Penate-Medina, P.B. Zanzonico, R.D. Carvajal, P. Mohan, Y. Ye et al., Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci. Transl Med. 6(260), 260ra149 (2014)

    Article  Google Scholar 

  18. J. Liu, M. Yu, C. Zhou, S. Yang, X. Ning, J. Zheng, Passive tumor targeting of renal-clearable luminescent gold nanoparticles: long tumor retention and fast normal tissue clearance. J. Am. Chem. Soc. 135(13), 4978–4981 (2013)

    Article  Google Scholar 

  19. M. Yu, J. Liu, X. Ning, J. Zheng, High-contrast noninvasive imaging of kidney clearance kinetics enabled by renal clearable nanofluorophores. Angew. Chem. Int. Ed. Engl. 54(51), 15434–15438 (2015)

    Article  Google Scholar 

  20. J. Liu, M. Yu, X. Ning, C. Zhou, S. Yang, J. Zheng, PEGylation and Zwitterionization: pros and cons in the renal clearance and tumor targeting of near-IR-emitting gold nanoparticles. Angew. Chem. Int. Ed. Engl. 52(48), 12572–12576 (2013)

    Article  Google Scholar 

  21. L. Cheng, D. Jiang, A. Kamkaew, H.F. Valdovinos, H.-J. Im, L. Feng et al., Renal-clearable PEGylated porphyrin nanoparticles for image-guided photodynamic cancer therapy. Adv. Funct. Mater. 27, 34 (2017)

    Google Scholar 

  22. A. Ruggiero, C.H. Villa, E. Bander, D.A. Rey, M. Bergkvist, C.A. Batt et al., Paradoxical glomerular filtration of carbon nanotubes. Proc. Natl. Acad. Sci. U.S.A. 107(27), 12369–12374 (2010)

    Article  ADS  Google Scholar 

  23. L. Lacerda, A. Soundararajan, R. Singh, G. Pastorin, K.T. Al-Jamal, J. Turton et al., Dynamic Imaging of functionalized multi-walled carbon nanotube systemic circulation and urinary excretion. Adv. Mater. 20(2), 225 (2008)

    Article  Google Scholar 

  24. M.F. Tosi, Innate immune responses to infection. J. Allergy Clin. Immunol. 116(2), 241–249 (2005); quiz 50

    Article  Google Scholar 

  25. J.V. Sarma, P.A. Ward, The complement system. Cell Tissue Res. 343(1), 227–235 (2011)

    Article  Google Scholar 

  26. M.L. Litvack, N. Palaniyar, Review: Soluble innate immune pattern-recognition proteins for clearing dying cells and cellular components: implications on exacerbating or resolving inflammation. Innate Immun. 16(3), 191–200 (2010)

    Article  Google Scholar 

  27. M. Lundqvist, J. Stigler, G. Elia, I. Lynch, T. Cedervall, K.A. Dawson, Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. U.S.A. 105(38), 14265–14270 (2008)

    Article  ADS  Google Scholar 

  28. S. Nie, Understanding and overcoming major barriers in cancer nanomedicine. Nanomedicine (Lond.) 5(4), 523–528 (2010)

    Article  Google Scholar 

  29. A. Gessner, A. Lieske, B. Paulke, R. Muller, Influence of surface charge density on protein adsorption on polymeric nanoparticles: analysis by two-dimensional electrophoresis. Eur. J. Pharm. Biopharm. 54(2), 165–170 (2002)

    Article  Google Scholar 

  30. A. Vonarbourg, C. Passirani, P. Saulnier, J.P. Benoit, Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials 27(24), 4356–4373 (2006)

    Article  Google Scholar 

  31. P. Aggarwal, J.B. Hall, C.B. McLeland, M.A. Dobrovolskaia, S.E. McNeil, Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv. Drug Deliv. Rev. 61(6), 428–437 (2009)

    Article  Google Scholar 

  32. C.D. Walkey, W.C. Chan, Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem. Soc. Rev. 41(7), 2780–2799 (2012)

    Article  Google Scholar 

  33. M.M. Frank, L.F. Fries, The role of complement in inflammation and phagocytosis. Immunol. Today 12(9), 322–326 (1991)

    Article  Google Scholar 

  34. E. Blanco, H. Shen, M. Ferrari, Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33(9), 941–951 (2015)

    Article  Google Scholar 

  35. E. Boros, A.M. Bowen, L. Josephson, N. Vasdev, J.P. Holland, Chelate-free metal ion binding and heat-induced radiolabeling of iron oxide nanoparticles. Chem. Sci. 6(1), 225–236 (2015)

    Article  Google Scholar 

  36. F. Chen, S. Goel, H.F. Valdovinos, H. Luo, R. Hernandez, T.E. Barnhart et al., In vivo integrity and biological fate of chelator-free zirconium-89-labeled mesoporous silica nanoparticles. ACS Nano 9(8), 7950–7959 (2015)

    Article  Google Scholar 

  37. Y. Zhan, F. Ai, F. Chen, H.F. Valdovinos, H. Orbay, H. Sun et al., Intrinsically zirconium-89 labeled Gd2O2S: Eu nanoprobes for in vivo positron emission tomography and gamma-ray-induced radioluminescence imaging. Small 12(21), 2872–2876 (2016)

    Article  Google Scholar 

  38. S. Shi, B.C. Fliss, Z. Gu, Y. Zhu, H. Hong, H.F. Valdovinos et al., Chelator-free labeling of layered double hydroxide nanoparticles for in vivo PET imaging. Sci. Rep. 5, 16930 (2015)

    Article  ADS  Google Scholar 

  39. M.A. Abdelhalim, B.M. Jarrar, Histological alterations in the liver of rats induced by different gold nanoparticle sizes, doses and exposure duration. J. Nanobioechnol. 10, 5 (2012)

    Article  Google Scholar 

  40. H.J. Seo, S.H. Nam, H.J. Im, J.Y. Park, J.Y. Lee, B. Yoo et al., Rapid hepatobiliary excretion of micelle-encapsulated/radiolabeled upconverting nanoparticles as an integrated form. Sci. Rep. 5, 15685 (2015)

    Article  ADS  Google Scholar 

  41. D.S. Lee, H.J. Im, Y.S. Lee, Radionanomedicine: widened perspectives of molecular theragnosis. Nanomedicine 11(4), 795–810 (2015)

    Article  Google Scholar 

  42. J. Shi, P.W. Kantoff, R. Wooster, O.C. Farokhzad, Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 17(1), 20–37 (2017)

    Article  Google Scholar 

  43. C.G. England, H.J. Im, L. Feng, F. Chen, S.A. Graves, R. Hernandez et al., Re-assessing the enhanced permeability and retention effect in peripheral arterial disease using radiolabeled long circulating nanoparticles. Biomaterials 100, 101–109 (2016)

    Article  Google Scholar 

  44. H.J. Im, C.G. England, L. Feng, S.A. Graves, R. Hernandez, R.J. Nickles et al., Accelerated blood clearance phenomenon reduces the passive targeting of PEGylated nanoparticles in peripheral arterial disease. ACS Appl. Mater. Interfaces. 8(28), 17955–17963 (2016)

    Article  Google Scholar 

  45. P.L. Rodriguez, T. Harada, D.A. Christian, D.A. Pantano, R.K. Tsai, D.E. Discher, Minimal “self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 339(6122), 971–975 (2013)

    Article  ADS  Google Scholar 

  46. A. Parodi, N. Quattrocchi, A.L. van de Ven, C. Chiappini, M. Evangelopoulos, J.O. Martinez et al., Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat. Nanotechnol. 8(1), 61–68 (2013)

    Article  ADS  Google Scholar 

  47. S.R.Z. Abdel-Misih, M. Bloomston, Liver anatomy. Surg. Clin. North Am. 90(4), 643–653 (2010)

    Article  Google Scholar 

  48. X. Chu, K. Korzekwa, R. Elsby, K. Fenner, A. Galetin, Y. Lai et al., Intracellular drug concentrations and transporters: measurement, modeling, and implications for the liver. Clin. Pharmacol. Ther. 94(1), 126–141 (2013)

    Article  Google Scholar 

  49. V. Racanelli, B. Rehermann, The liver as an immunological organ. Hepatology 43(2 Suppl 1), S54–S62 (2006)

    Article  Google Scholar 

  50. G. Renaud, R.L. Hamilton, R.J. Havel, Hepatic metabolism of colloidal gold-low-density lipoprotein complexes in the rat: evidence for bulk excretion of lysosomal contents into bile. Hepatology 9(3), 380–392 (1989)

    Article  Google Scholar 

  51. C. Fu, T. Liu, L. Li, H. Liu, D. Chen, F. Tang, The absorption, distribution, excretion and toxicity of mesoporous silica nanoparticles in mice following different exposure routes. Biomaterials 34(10), 2565–2575 (2013)

    Article  Google Scholar 

  52. T. Skajaa, D.P. Cormode, P.A. Jarzyna, A. Delshad, C. Blachford, A. Barazza et al., The biological properties of iron oxide core high-density lipoprotein in experimental atherosclerosis. Biomaterials 32(1), 206–213 (2011)

    Article  Google Scholar 

  53. J.S. Souris, C.H. Lee, S.H. Cheng, C.T. Chen, C.S. Yang, J.A. Ho et al., Surface charge-mediated rapid hepatobiliary excretion of mesoporous silica nanoparticles. Biomaterials 31(21), 5564–5574 (2010)

    Article  Google Scholar 

  54. R. Kumar, I. Roy, T.Y. Ohulchanskky, L.A. Vathy, E.J. Bergey, M. Sajjad et al., In vivo biodistribution and clearance studies using multimodal organically modified silica nanoparticles. ACS Nano 4(2), 699–708 (2010)

    Article  Google Scholar 

  55. M. Rui, W. Guo, Q. Ding, X. Wei, J. Xu, Y. Xu, Recombinant high-density lipoprotein nanoparticles containing gadolinium-labeled cholesterol for morphologic and functional magnetic resonance imaging of the liver. Int. J. Nanomed. 7, 3751–3768 (2012)

    Article  Google Scholar 

  56. J.W. Bulte, A.H. Schmieder, J. Keupp, S.D. Caruthers, S.A. Wickline, G.M. Lanza, MR cholangiography demonstrates unsuspected rapid biliary clearance of nanoparticles in rodents: implications for clinical translation. Nanomedicine 10(7), 1385–1388 (2014)

    Article  Google Scholar 

  57. P. Chevallier, A. Walter, A. Garofalo, I. Veksler, J. Lagueux, S. Begin-Colin et al., Tailored biological retention and efficient clearance of pegylated ultra-small MnO nanoparticles as positive MRI contrast agents for molecular imaging. J. Mater. Chem. B Mater. Biol. Med. 2(13), 1779–1790 (2014)

    Article  Google Scholar 

  58. J. Lu, M. Liong, Z. Li, J.I. Zink, F. Tamanoi, Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small 6(16), 1794–1805 (2010)

    Article  Google Scholar 

  59. L. Yang, Y.-C. Lee, M.I. Kim, H.G. Park, Y.S. Huh, Y. Shao et al., Biodistribution and clearance of aminoclay nanoparticles: implication for in vivo applicability as a tailor-made drug delivery carrier. J. Mater. Chem. B Mater. Biol. Med. 2(43), 7567–7574 (2014)

    Article  Google Scholar 

  60. L. Wang, Y.F. Li, L. Zhou, Y. Liu, L. Meng, K. Zhang et al., Characterization of gold nanorods in vivo by integrated analytical techniques: their uptake, retention, and chemical forms. Anal. Bioanal. Chem. 396(3), 1105–1114 (2010)

    Article  Google Scholar 

  61. J. Xiao, X.M. Tian, C. Yang, P. Liu, N.Q. Luo, Y. Liang et al., Ultrahigh relaxivity and safe probes of manganese oxide nanoparticles for in vivo imaging. Sci. Rep. 3, 3424 (2013)

    Article  Google Scholar 

  62. P. Bourrinet, H.H. Bengele, B. Bonnemain, A. Dencausse, J.-M. Idee, P.M. Jacobs et al., Preclinical safety and pharmacokinetic profile of ferumoxtran-10, an ultrasmall superparamagnetic iron oxide magnetic resonance contrast agent. Invest. Radiol. 41(3), 313–324 (2006)

    Article  Google Scholar 

  63. C. Liu, Z. Gao, J. Zeng, Y. Hou, F. Fang, Y. Li et al., Magnetic/upconversion fluorescent NaGdF4:Yb, Er nanoparticle-based dual-modal molecular probes for imaging tiny tumors in vivo. ACS Nano 7(8), 7227–7240 (2013)

    Article  Google Scholar 

  64. Y.N. Zhang, W. Poon, A.J. Tavares, I.D. McGilvray, W.C. Chan, Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination. J. Control Release 240, 332–348 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung-Jun Im .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Im, HJ. (2018). Excretion and Clearance. In: Lee, D. (eds) Radionanomedicine. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-67720-0_19

Download citation

Publish with us

Policies and ethics