Skip to main content

Polyethylene Glycolation (PEGylation) and the Similar

  • Chapter
  • First Online:
Radionanomedicine

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 794 Accesses

Abstract

To overcome the adverse effect of hydrophobicity of nanomaterials, polyethylene glycolation (PEGylation) is popularly used, which were already in clinical use of peptide or monoclonal antibodies. The same PEGylation is tried to hydrophilize nanomaterials but the results of this PEGylation differs according to the size, shape, terminal residues and others. The bodily response to the nanomaterials depend upon immune recognition of the PEG by IgM or innate immune cells. Mechanism of innate immune response to PEGylated nanomaterials are poorly understood. Zwitterions such as polybetaines were proposed to replace PEGs for hydrophilization. The mechanism is being investigated and not yet clearly known. The method to modify the surface of nanomaterials with PEGs and zwitterions can also influence final bodily response and thus simple and easy method of encapsulation was developed. The effect of diverse modification of nanomaterials with PEGs or zwitterions shall be understood with nanomaterials modified with this encapsulation method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.C. Lee, J.-K. Chung, D.S. Lee, Koh Chang-Soon Nuclear Medicine (Korea Medical Books, Seoul, 2008)

    Google Scholar 

  2. S.Y. Seong, P. Matzinger, Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat. Rev. Immunol. 4(6), 469–478 (2004)

    Article  Google Scholar 

  3. X. Cao, Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease. Nat. Rev. Immunol. 16(1), 35–50 (2016)

    Article  Google Scholar 

  4. D.F. Moyano, M. Goldsmith, D.J. Solfiell, D. Landesman-Milo, O.R. Miranda, D. Peer et al., Nanoparticle hydrophobicity dictates immune response. J. Am. Chem. Soc. 134(9), 3965–3967 (2012)

    Article  Google Scholar 

  5. D.F. Moyano, Y. Liu, D. Peer, V.M. Rotello, Modulation of immune response using engineered nanoparticle surfaces. Small 12(1), 76–82 (2016)

    Article  Google Scholar 

  6. A.K. Åslund, E. Sulheim, S. Snipstad, E. von Haartman, H. Baghirov, N. Starr et al., Quantification and qualitative effects of different PEGylations on poly (butyl cyanoacrylate) nanoparticles. Mol. Pharm. 14, 2560–2569 (2017)

    Article  Google Scholar 

  7. J.L. Perry, K.G. Reuter, M.P. Kai, K.P. Herlihy, S.W. Jones, J.C. Luft et al., PEGylated PRINT nanoparticles: the impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics. Nano Lett. 12(10), 5304–5310 (2012)

    Article  ADS  Google Scholar 

  8. Z.G. Estephan, P.S. Schlenoff, J.B. Schlenoff, Zwitteration as an alternative to PEGylation. Langmuir 27(11), 6794–6800 (2011)

    Article  Google Scholar 

  9. K. Pombo García, K. Zarschler, L. Barbaro, J.A. Barreto, W. O’Malley, L. Spiccia et al., Zwitterionic-coated “stealth” nanoparticles for biomedical applications: recent advances in countering biomolecular corona formation and uptake by the mononuclear phagocyte system. Small 10(13), 2516–2529 (2014)

    Article  Google Scholar 

  10. P. Zhang, F. Sun, C. Tsao, S. Liu, P. Jain, A. Sinclair et al., Zwitterionic gel encapsulation promotes protein stability, enhances pharmacokinetics, and reduces immunogenicity. Proc. Natl. Acad. Sci. U S A 112(39), 12046–12051 (2015)

    Article  ADS  Google Scholar 

  11. P.L. Turecek, M.J. Bossard, F. Schoetens, I.A. Ivens, PEGylation of biopharmaceuticals: a review of chemistry and nonclinical safety information of approved drugs. J. Pharm. Sci. 105(2), 460–475 (2016)

    Article  Google Scholar 

  12. M.J. Roberts, M.D. Bentley, J.M. Harris, Chemistry for peptide and protein PEGylation. Adv. Drug Deliv. Rev. 54(4), 459–476 (2002)

    Article  Google Scholar 

  13. L. Wu, J. Chen, Y. Wu, B. Zhang, X. Cai, Z. Zhang et al., Precise and combinatorial PEGylation generates a low-immunogenic and stable form of human growth hormone. J. Control Release 249, 84–93 (2017)

    Article  Google Scholar 

  14. S. Milani, F.B. Bombelli, A.S. Pitek, K.A. Dawson, J. Rädler, Reversible versus irreversible binding of transferrin to polystyrene nanoparticles: soft and hard corona. ACS Nano 6(3), 2532–2541 (2012)

    Article  Google Scholar 

  15. M.P. Monopoli, C. Aberg, A. Salvati, K.A. Dawson, Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 7(12), 779–786 (2012)

    Article  ADS  Google Scholar 

  16. A. Salvati, A.S. Pitek, M.P. Monopoli, K. Prapainop, F.B. Bombelli, D.R. Hristov et al., Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol. 8(2), 137–143 (2013)

    Article  ADS  Google Scholar 

  17. Y. Yan, K.T. Gause, M.M. Kamphuis, C.S. Ang, N.M. O’Brien-Simpson, J.C. Lenzo et al., Differential roles of the protein corona in the cellular uptake of nanoporous polymer particles by monocyte and macrophage cell lines. ACS Nano 7(12), 10960–10970 (2013)

    Article  Google Scholar 

  18. P.M. Kelly, C. Åberg, E. Polo, A. O’Connell, J. Cookman, J. Fallon et al., Mapping protein binding sites on the biomolecular corona of nanoparticles. Nat. Nanotechnol. 10(5), 472–479 (2015)

    Article  ADS  Google Scholar 

  19. D. Docter, D. Westmeier, M. Markiewicz, S. Stolte, S.K. Knauer, R.H. Stauber, The nanoparticle biomolecule corona: lessons learned—challenge accepted? Chem. Soc. Rev. 44(17), 6094–6121 (2015)

    Article  Google Scholar 

  20. S. Tenzer, D. Docter, J. Kuharev, A. Musyanovych, V. Fetz, R. Hecht et al., Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotechnol. 8(10), 772–781 (2013)

    Article  ADS  Google Scholar 

  21. C.D. Walkey, J.B. Olsen, F. Song, R. Liu, H. Guo, D.W. Olsen et al., Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano 8(3), 2439–2455 (2014)

    Article  Google Scholar 

  22. C. Corbo, R. Molinaro, A. Parodi, N.E. Toledano Furman, F. Salvatore et al., The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomed. (Lond). 11(1), 81–100 (2016)

    Article  Google Scholar 

  23. M. Hadjidemetriou, Z. Al-Ahmady, M. Mazza, R.F. Collins, K. Dawson, K. Kostarelos, In vivo biomolecule corona around blood-circulating, clinically used and antibody-targeted lipid bilayer nanoscale vesicles. ACS Nano 9(8), 8142–8156 (2015)

    Article  Google Scholar 

  24. S. Huo, S. Chen, N. Gong, J. Liu, X. Li, Y. Zhao et al., Ultrasmall gold nanoparticles behavior in vivo modulated by surface polyethylene glycol (PEG) grafting. Bioconjug. Chem. 28(1), 239–243 (2017)

    Article  Google Scholar 

  25. B. Kang, P. Okwieka, S. Schöttler, S. Winzen, J. Langhanki, K. Mohr et al., Carbohydrate-based nanocarriers exhibiting specific cell targeting with minimum influence from the protein corona. Angew. Chem. Int. Ed. Engl. 54(25), 7436–7440 (2015)

    Article  Google Scholar 

  26. Z. Amoozgar, Y. Yeo, Recent advances in stealth coating of nanoparticle drug delivery systems. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 4(2), 219–233 (2012)

    Article  Google Scholar 

  27. S. Schöttler, K. Landfester, V. Mailänder, Controlling the stealth effect of nanocarriers through understanding the protein corona. Angew. Chem. Int. Ed. Engl. 55(31), 8806–8815 (2016)

    Article  Google Scholar 

  28. S. Schöttler, G. Becker, S. Winzen, T. Steinbach, K. Mohr, K. Landfester et al., Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nat. Nanotechnol. 11(4), 372–377 (2016)

    Article  ADS  Google Scholar 

  29. S. Ritz, S. Schöttler, N. Kotman, G. Baier, A. Musyanovych, J. Kuharev et al., Protein corona of nanoparticles: distinct proteins regulate the cellular uptake. Biomacromolecules 16(4), 1311–1321 (2015)

    Article  Google Scholar 

  30. E. Harrison, J.R. Nicol, M. Macias-Montero, G.A. Burke, J.A. Coulter, B.J. Meenan et al., A comparison of gold nanoparticle surface co-functionalization approaches using Polyethylene Glycol (PEG) and the effect on stability, non-specific protein adsorption and internalization. Mater Sci. Eng. C Mater Biol. Appl. 62, 710–718 (2016)

    Article  Google Scholar 

  31. K. Peynshaert, S.J. Soenen, B.B. Manshian, S.H. Doak, K. Braeckmans, S.C. De Smedt et al., Coating of quantum dots strongly defines their effect on lysosomal health and autophagy. Acta Biomater. 48, 195–205 (2017)

    Article  Google Scholar 

  32. J. Wolfram, Y. Yang, J. Shen, A. Moten, C. Chen, H. Shen et al., The nano-plasma interface: implications of the protein corona. Coll. Surf. B Biointerfaces 124, 17–24 (2014)

    Article  Google Scholar 

  33. L. Sanchez, Y. Yi, Y. Yu, Effect of partial PEGylation on particle uptake by macrophages. Nanoscale 9(1), 288–297 (2017)

    Article  Google Scholar 

  34. G. Settanni, J. Zhou, T. Suo, S. Schöttler, K. Landfester, F. Schmid et al., Protein corona composition of poly(ethylene glycol)- and poly(phosphoester)-coated nanoparticles correlates strongly with the amino acid composition of the protein surface. Nanoscale 9(6), 2138–2144 (2017)

    Article  Google Scholar 

  35. S. Mondini, M. Leonzino, C. Drago, A.M. Ferretti, S. Usseglio, D. Maggioni et al., Zwitterion-coated iron oxide nanoparticles: surface chemistry and intracellular uptake by hepatocarcinoma (HepG2) cells. Langmuir 31(26), 7381–7390 (2015)

    Article  Google Scholar 

  36. Q. Shao, S. Jiang, Molecular understanding and design of zwitterionic materials. Adv. Mater. 27(1), 15–26 (2015)

    Article  Google Scholar 

  37. A.S. Abu Lila, H. Kiwada, T. Ishida, The accelerated blood clearance (ABC) phenomenon: clinical challenge and approaches to manage. J. Control Release 172(1), 38–47 (2013)

    Article  Google Scholar 

  38. T. Shimizu, T. Ishida, H. Kiwada, Transport of PEGylated liposomes from the splenic marginal zone to the follicle in the induction phase of the accelerated blood clearance phenomenon. Immunobiology 218(5), 725–732 (2013)

    Article  Google Scholar 

  39. N.J. Ganson, T.J. Povsic, B.A. Sullenger, J.H. Alexander, S.L. Zelenkofske, J.M. Sailstad et al., Pre-existing anti-polyethylene glycol antibody linked to first-exposure allergic reactions to pegnivacogin, a PEGylated RNA aptamer. J. Allergy Clin. Immunol. 137(5):1610–1613.e7 (2016)

    Article  Google Scholar 

  40. P. Zhang, F. Sun, S. Liu, S. Jiang, Anti-PEG antibodies in the clinic: current issues and beyond PEGylation. J. Control Release 244(Pt B):184–193 (2016)

    Article  Google Scholar 

  41. J.W. Lee, Y.J. Lee, U.C. Shin, S.W. Kim, B.I. Kim, K.C. Lee et al., Improved pharmacokinetics following PEGylation and dimerization of a c(RGD-ACH-K) conjugate used for tumor positron emission tomography imaging. Cancer Biother. Radiopharm. 31(8), 295–301 (2016)

    Article  Google Scholar 

  42. Y.K. Lee, J.M. Jeong, L. Hoigebazar, B.Y. Yang, Y.S. Lee, B.C. Lee et al., Nanoparticles modified by encapsulation of ligands with a long alkyl chain to affect multispecific and multimodal imaging. J. Nucl. Med. 53(9), 1462–1470 (2012)

    Article  Google Scholar 

  43. Y.S. Lee, Y.I. Kim, D.S. Lee, Future perspectives of radionanomedicine using the novel micelle-encapsulation method for surface modification. Nucl. Med. Mol. Imaging 49(3), 170–173 (2015)

    Article  Google Scholar 

  44. B.Y. Yang, S.H. Moon, S.R. Seelam, M.J. Jeon, Y.S. Lee, D.S. Lee et al., Development of a multimodal imaging probe by encapsulating iron oxide nanoparticles with functionalized amphiphiles for lymph node imaging. Nanomed. (Lond). 10(12), 1899–1910 (2015)

    Article  Google Scholar 

  45. S.H. Moon, B.Y. Yang, Y.J. Kim, M.K. Hong, Y.S. Lee, D.S. Lee et al., Development of a complementary PET/MR dual-modal imaging probe for targeting prostate-specific membrane antigen (PSMA). Nanomedicine 12(4), 871–879 (2016)

    Article  Google Scholar 

  46. H.J. Seo, S.H. Nam, H.J. Im, J.Y. Park, J.Y. Lee, B. Yoo et al., Rapid hepatobiliary excretion of micelle-encapsulated/radiolabeled upconverting nanoparticles as an integrated form. Sci. Rep. 5, 15685 (2015)

    Article  ADS  Google Scholar 

  47. S. Jeong, Y.I. Kim, H. Kang, G. Kim, M.G. Cha, H. Chang et al., Fluorescence-Raman dual modal endoscopic system for multiplexed molecular diagnostics. Sci. Rep. 5, 9455 (2015)

    Article  Google Scholar 

  48. Y.I. Kim, S. Jeong, K.O. Jung, M.G. Song, C.H. Lee, S.J. Chung et al., Simultaneous detection of EGFR and VEGF in colorectal cancer using fluorescence-Raman endoscopy. Sci. Rep. 7(1), 1035 (2017)

    Article  ADS  Google Scholar 

  49. L. Zhang, Z. Cao, T. Bai, L. Carr, J.R. Ella-Menye, C. Irvin, B.D. Ratner, S. Jiang, Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat. Biotechnol. 31(6), 553–556 (2013)

    Article  Google Scholar 

  50. W. Yang, J.R. Ella-Menye, S. Liu, T. Bai, D. Wang, Q. Yu, Y. Li, S. Jiang, Cross-linked carboxybetaine SAMs enable nanoparticles with remarkable stability in complex media. Langmuir 30(9), 2522–2529 (2014)

    Article  Google Scholar 

  51. D. Kim, M.K. Chae, H.J. Joo, I.H. Jeong, J.H. Cho, C. Lee, Facile preparation of zwitterion-stabilized superparamagnetic iron oxide nanoparticles (ZSPIONs) as an MR contrast agent for in vivo applications. Langmuir 28(25), 9634–9639 (2012)

    Article  Google Scholar 

  52. Z. Zhou, L. Wang, X. Chi, J. Bao, L. Yang, W. Zhao et al., Engineered iron-oxide-based nanoparticles as enhanced T1 contrast agents for efficient tumor imaging. ACS Nano 7(4), 3287–3296 (2013)

    Article  ADS  Google Scholar 

  53. F. Hu, K. Chen, H. Xu, H. Gu, Functional short-chain zwitterion coated silica nanoparticles with antifouling property in protein solutions. Coll. Surf. B Biointerfaces 126, 251–256 (2015)

    Article  Google Scholar 

  54. H. Wei, O.T. Bruns, M.G. Kaul, E.C. Hansen, M. Barch, A. Wiśniowska et al., Exceedingly small iron oxide nanoparticles as positive MRI contrast agents. Proc. Natl. Acad. Sci. U S A. 114(9), 2325–2330 (2017)

    Article  Google Scholar 

  55. F. Xu, M. Reiser, X. Yu, S. Gummuluru, L. Wetzler, B.M. Reinhard, Lipid-mediated targeting with membrane-wrapped nanoparticles in the presence of corona formation. ACS Nano 10(1), 1189–1200 (2016)

    Article  Google Scholar 

  56. B. Dubertret, P. Skourides, D.J. Norris, V. Noireaux, A.H. Brivanlou, A. Libchaber, In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298(5599), 1759–1762 (2002)

    Article  ADS  Google Scholar 

  57. H. Fan, K. Yang, D.M. Boye, T. Sigmon, K.J. Malloy, H. Xu et al., Self-assembly of ordered, robust, three-dimensional gold nanocrystal/silica arrays. Science 304(5670), 567–571 (2004)

    Article  ADS  Google Scholar 

  58. H. Fan, E.W. Leve, C. Scullin, J. Gabaldon, D. Tallant, S. Bunge et al., Surfactant-assisted synthesis of water-soluble and biocompatible semiconductor quantum dot micelles. Nano Lett. 5(4), 645–648 (2005)

    Article  ADS  Google Scholar 

  59. O. Carion, B. Mahler, T. Pons, B. Dubertret, Synthesis, encapsulation, purification and coupling of single quantum dots in phospholipid micelles for their use in cellular and in vivo imaging. Nat. Protoc. 2(10), 2383–2390 (2007)

    Article  Google Scholar 

  60. D.S. Lee, H.J. Im, Y.S. Lee, Radionanomedicine: widened perspectives of molecular theragnosis. Nanomedicine 11(4), 795–810 (2015)

    Article  Google Scholar 

  61. K. Stockhofe, J.M. Postema, H. Schieferstein, T.L. Ross, Radiolabeling of nanoparticles and polymers for PET imaging. Pharmaceuticals 7(4), 392–418 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Soo Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, D.S., Lee, YS. (2018). Polyethylene Glycolation (PEGylation) and the Similar. In: Lee, D. (eds) Radionanomedicine. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-67720-0_18

Download citation

Publish with us

Policies and ethics