Skip to main content

Bioorthogonal Reaction for Fluorine-18 Labeling

  • Chapter
  • First Online:
Radionanomedicine

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 810 Accesses

Abstract

Specific molecular imaging probes including radiopharmaceuticals labeled with positron-emitters, such as fluorine-18 (18F, t1/2 = 109.8 min), need to expand their applications of positron emission tomography (PET) molecular imaging study. In recent years, bioorthogonal chemistry such as inverse electron-demand Diels-Alder cycloaddition reactions and strain-promoted alkyne azide cycloaddition (SPAAC) has been regarded as alternative bioorthogonal ligation reactions of bioactive molecules with radiolabeled building blocks. In this chapter, I will introduce an overview of this emerging synthetic strategies based on the catalyst-free SPAAC conjugation reaction and Diels-Alder cycloaddition reactions using tetrazine/trans-cyclooctene (TCO) derivatives under physiologically-friendly reaction conditions. I will also introduce that the pretargeting method by the SPAAC reaction for tracking mesoporous silica nanoparticles (MSNs) in in vivo system. This bioorthogonal SPAAC-based pretargeting protocol allow 18F with a short half-life to be used for labeling of the MSNs to obtain their tracking PET images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.C. Kolb, M.G. Finn, K.B. Sharpless, Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl. 40(11), 2004–2021 (2001)

    Article  Google Scholar 

  2. C. Mamat, T. Ramenda, F.R. Wuest, Recent applications of click chemistry for the synthesis of radiotracers for molecular imaging. Mini Rev. Org. Chem. 6(1), 21–34 (2009)

    Article  Google Scholar 

  3. T.L. Mindt, H. Struthers, L. Brans, T. Anguelov, C. Schweinsberg, V. Maes et al., “Click to chelate”: synthesis and installation of metal chelates into biomolecules in a single step. J. Am. Chem. Soc. 128(47), 15096–15097 (2006)

    Article  Google Scholar 

  4. D. Thonon, C. Kech, J. Paris, C. Lemaire, A. Luxen, New strategy for the preparation of clickable peptides and labeling with 1-(azidomethyl)-4-[18F]-fluorobenzene for PET. Bioconjug. Chem. 20(4), 817–823 (2009)

    Article  Google Scholar 

  5. S. Maschauer, J. Einsiedel, R. Haubner, C. Hocke, M. Ocker, H. Hübner et al., Labeling and glycosylation of peptides using click chemistry: a general approach to 18F-glycopeptides as effective imaging probes for positron emission tomography. Angew. Chem. Int. Ed. Engl. 49(5), 976–979 (2010)

    Article  Google Scholar 

  6. J.M. Baskin, J.A. Prescher, S.T. Laughlin, N.J. Agard, P.V. Chang, I.A. Miller et al., Copper-free click chemistry for dynamic in vivo imaging. Proc. Natl. Acad. Sci. U.S.A. 104(43), 16793–16797 (2007)

    Article  ADS  Google Scholar 

  7. E. Lallana, E. Fernandez-Megia, R. Riguera, Surpassing the use of copper in the click functionalization of polymeric nanostructures: a strain-promoted approach. J. Am. Chem. Soc. 131(16), 5748–5750 (2009)

    Article  Google Scholar 

  8. D.C. Kennedy, C.S. McKay, M.C. Legault, D.C. Danielson, J.A. Blake, A.F. Pegoraro et al., Cellular consequences of copper complexes used to catalyze bioorthogonal click reactions. J. Am. Chem. Soc. 133(44), 17993–18001 (2011)

    Article  Google Scholar 

  9. M. Pretze, D. Pietzsch, C. Mamat, Recent trends in bioorthogonal click-radiolabeling reactions using fluorine-18. Molecules 18(7), 8618–8665 (2013)

    Article  Google Scholar 

  10. J.C. Jewett, C.R. Bertozzi, Cu-free click cycloaddition reactions in chemical biology. Chem. Soc. Rev. 39(4), 1272–1279 (2010)

    Article  Google Scholar 

  11. E.M. Sletten, C.R. Bertozzi, From mechanism to mouse: a tale of two bioorthogonal reactions. Acc. Chem. Res. 44(9), 666–676 (2011)

    Article  Google Scholar 

  12. M.F. Debets, S.S. van Berkel, J. Dommerholt, A.T. Dirks, F.P. Rutjes, F.L. van Delft, Bioconjugation with strained alkenes and alkynes. Acc. Chem. Res. 44(9), 805–815 (2011)

    Article  Google Scholar 

  13. E.M. Sletten, C.R. Bertozzi, Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed. Engl. 48(38), 6974–6998 (2009)

    Article  Google Scholar 

  14. S.T. Laughlin, J.M. Baskin, S.L. Amacher, C.R. Bertozzi, In vivo imaging of membrane-associated glycans in developing zebrafish. Science 320(5876), 664–667 (2008)

    Article  ADS  Google Scholar 

  15. J.C. Jewett, E.M. Sletten, C.R. Bertozzi, Rapid Cu-free click chemistry with readily synthesized biarylazacyclooctynones. J. Am. Chem. Soc. 132(11), 3688–3690 (2010)

    Article  Google Scholar 

  16. Y. Jiang, J. Chen, C. Deng, E.J. Suuronen, Z. Zhong, Click hydrogels, microgels and nanogels: emerging platforms for drug delivery and tissue engineering. Biomaterials 35(18), 4969–4985 (2014)

    Article  Google Scholar 

  17. L. Carroll, H.L. Evans, E.O. Aboagye, A.C. Spivey, Bioorthogonal chemistry for pre-targeted molecular imaging–progress and prospects. Org. Biomol. Chem. 11(35), 5772–5781 (2013)

    Article  Google Scholar 

  18. V. Bouvet, M. Wuest, F. Wuest, Copper-free click chemistry with the short-lived positron emitter fluorine-18. Org. Biomol. Chem. 9(21), 7393–7399 (2011)

    Article  Google Scholar 

  19. P. Ostrovskis, C.M.R. Volla, M. Turks, D. Markovic, Application of metal free click chemistry in biological studies. Curr. Org. Chem. 17, 610–640 (2013)

    Article  Google Scholar 

  20. J.M. Baskin, C.R. Bertozzi, Copper-free click chemistry: Bioorthogonal reagents for tagging azides. Aldrichimica Acta. 43, 15–23 (2010)

    Google Scholar 

  21. X. Ning, J. Guo, M.A. Wolfert, G.J. Boons, Visualizing metabolically labeled glycoconjugates of living cells by copper-free and fast Huisgen cycloadditions. Angew. Chem. Int. Ed. Engl. 47(12), 2253–2255 (2008)

    Article  Google Scholar 

  22. A.A. Poloukhtine, N.E. Mbua, M.A. Wolfert, G.J. Boons, V.V. Popik, Selective labeling of living cells by a photo-triggered click reaction. J. Am. Chem. Soc. 131(43), 15769–15776 (2009)

    Article  Google Scholar 

  23. M.F. Debets, S.S. van Berkel, S. Schoffelen, F.P. Rutjes, J.C. van Hest, F.L. van Delft, Aza-dibenzocyclooctynes for fast and efficient enzyme PEGylation via copper-free (3 + 2) cycloaddition. Chem. Commun. (Camb.) 46(1), 97–99 (2010)

    Article  Google Scholar 

  24. N.K. Devaraj, R. Weissleder, Biomedical applications of tetrazine cycloadditions. Acc. Chem. Res. 44(9), 816–827 (2011)

    Article  Google Scholar 

  25. M.E. Phelps, Positron emission tomography provides molecular imaging of biological processes. Proc. Natl. Acad. Sci. U.S.A. 97, 9226–9233 (2000)

    Article  ADS  Google Scholar 

  26. T.F. Massoud, S.S. Gambhir, Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 17(5), 545–580 (2003)

    Article  Google Scholar 

  27. S. Vallabhajosula, Molecular Imaging: Radiopharmaceuticals for PET and SPECT, 1st edn. (Springer, New York, 2009), pp. 133–193

    Google Scholar 

  28. S.M. Ametamey, M. Honer, P.A. Schubiger, Molecular imaging with PET. Chem. Rev. 108, 1501–1516 (2008)

    Article  Google Scholar 

  29. S.S. Gambhir, Molecular imaging of cancer with positron emission tomography. Nat. Rev. Cancer 2, 683–693 (2002)

    Article  Google Scholar 

  30. R. Schirrmacher, C. Wängler, E. Schirrmacher, Recent developments and trends in 18F-radiochemistry: syntheses and applications. Mini Rev. Org. Chem. 4, 317–329 (2007)

    Article  Google Scholar 

  31. D.W. Kim, D.S. Ahn, Y.H. Oh, S. Lee, H.S. Kil, S.J. Oh et al., A new class of SN2 reactions catalyzed by protic solvents: Facile fluorination for isotopic labeling of diagnostic molecules. J. Am. Chem. Soc. 128(50), 16394–16397 (2006)

    Article  Google Scholar 

  32. L.Y.T. Chou, K. Ming, W.C.W. Chan, Strategies for the intracellular delivery of nanoparticles. Chem. Soc. Rev. 40, 233–245 (2011)

    Article  Google Scholar 

  33. E. Ruoslahti, S.N. Bhatia, M.J. Sailor, Targeting of drugs and nanoparticles to tumors. J. Cell Biol. 188(6), 759–768 (2010)

    Article  Google Scholar 

  34. Z. Cheng, A. Al Zaki, J.Z. Hui, V.R. Muzykantov, A. Tsourkas, Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science 338(6109), 903–910 (2012)

    Article  ADS  Google Scholar 

  35. M.W. Ambrogio, C.R. Thomas, Y.L. Zhao, J.I. Zink, J.F. Stoddart, Mechanized silica nanoparticles: a new frontier in theranostic nanomedicine. Acc. Chem. Res. 44(10), 903–913 (2011)

    Article  Google Scholar 

  36. Z. Li, J.C. Barnes, A. Bosoy, J.F. Stoddart, J.I. Zink, Mesoporous silica nanoparticles in biomedical applications. Chem. Soc. Rev. 41(7), 2590–2605 (2012)

    Article  Google Scholar 

  37. A. De la Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu et al., Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat. Nanotechnol. 3(9), 557–562 (2008)

    Article  ADS  Google Scholar 

  38. J.M. Rosenholm, V. Mamaeva, C. Sahlgren, M. Lindén, Nanoparticles in targeted cancer therapy: mesoporous silica nanoparticles entering preclinical development stage. Nanomedicine (London) 7(1), 111–120 (2012)

    Article  Google Scholar 

  39. S.B. Lee, H.L. Kim, H.J. Jeong, S.T. Lim, M.H. Sohn, D.W. Kim, Mesoporous silica nanoparticle pretargeting for PET imaging based on a rapid bioorthogonal reaction in a living body. Angew. Chem. Int. Ed. Engl. 52, 10549–10552 (2013)

    Article  Google Scholar 

  40. J. Lu, M. Liong, Z. Li, J.I. Zink, F. Tamanoi, Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small 6(16), 1794–1805 (2010)

    Article  Google Scholar 

  41. S.L. Deutscher, Phage display in molecular imaging and diagnosis of cancer. Chem. Rev. 110(5), 3196–3211 (2010)

    Article  Google Scholar 

  42. K. Chen, P.S. Conti, Target-specific delivery of peptide-based probes for PET imaging. Adv. Drug Deliv. Rev. 62(11), 1005–1022 (2010)

    Article  Google Scholar 

  43. S.M. Okarvi, Recent progress in fluorine-18 labelled peptide radiopharmaceuticals. Eur. J. Nucl. Med. 28(7), 929–938 (2001)

    Article  Google Scholar 

  44. S. Gester, F. Wuest, B. Pawelke, R. Bergmann, J. Pietzsch, Synthesis and biodistribution of an 18F-labelled resveratrol derivative for small animal positron emission tomography. Amino Acids 29(4), 415–428 (2005)

    Article  Google Scholar 

  45. S. Lee, J. Xie, Chen X. Peptides and peptide hormones for molecular imaging and disease diagnosis. Chem. Rev. 110(5), 3087–3111 (2010)

    Article  Google Scholar 

  46. T. Reiner, E.J. Keliher, S. Earley, B. Marinelli, R. Weissleder, Synthesis and in vivo imaging of a 18F-labeled PARP1 inhibitor using a chemically orthogonal scavenger-assisted high-performance method. Angew. Chem. Int. Ed. Engl. 50(8), 1922–1925 (2011)

    Article  Google Scholar 

  47. K. Sachin, V.H. Jadhav, E.M. Kim, H.L. Kim, S.B. Lee, H.J. Jeong et al., F-18 labeling protocol of peptides based on chemically orthogonal strain-promoted cycloaddition under physiologically friendly reaction conditions. Bioconjug. Chem. 23(8), 1680–1686 (2012)

    Article  Google Scholar 

  48. H.L. Kim, K. Sachin, H.J. Jeong, W. Choi, H.S. Lee, D.W. Kim, F-18 Labeled RGD probes based on bioorthogonal strain-promoted click reaction for PET imaging. ACS Med. Chem. Lett. 6(4), 402–407 (2015)

    Article  Google Scholar 

  49. R.D. Carpenter, S.H. Hausner, J.L. Sutcliffe, Copper-free click for PET: rapid 1,3-dipolar cycloadditions with a fluorine-18 cyclooctyne. ACS Med. Chem. Lett. 2(12), 885–889 (2011)

    Article  Google Scholar 

  50. S.H. Hausner, R.D. Carpenter, N. Bauer, J.L. Sutcliffe, Evaluation of an integrin αvβ6-specific peptide labeled with [18F]fluorine by copper-free, strain-promoted click chemistry. Nucl. Med. Biol. 40(2), 233–239 (2013)

    Article  Google Scholar 

  51. S. Arumugam, J. Chin, R. Schirrmacher, V.V. Popik, A.P. Kostikov, [18F]Azadibenzocyclooctyne ([18F]ADIBO): A biocompatible radioactive labeling synthon for peptides using catalyst free [3 + 2] cycloaddition. Bioorg. Med. Chem. Lett. 21(23), 6987–6991 (2011)

    Article  Google Scholar 

  52. L.S. Campbell-Verduyn, L. Mirfeizi, A.K. Schoonen, R.A. Dierckx, P.H. Elsinga, B.L. Feringa, Strain-promoted copper-free “click” chemistry for 18F radiolabeling of bombesin. Angew. Chem. Int. Ed. Engl. 50(47), 11117–11120 (2011)

    Article  Google Scholar 

  53. S. Liu, M. Hassink, R. Selvaraj, L.P. Yap, R. Park, H. Wang et al., Efficient 18F labeling of cysteine-containing peptides and proteins using tetrazine-trans-cyclooctene ligation. Mol. Imaging 12(2), 121–128 (2013)

    Article  Google Scholar 

  54. E.J. Keliher, T. Reiner, G.M. Thurber, R. Upadhyay, R. Weissleder, Efficient 18F-labeling of synthetic exendin-4 analogues for imaging beta cells. ChemistryOpen 1(4), 177–183 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Wook Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, D.W. (2018). Bioorthogonal Reaction for Fluorine-18 Labeling. In: Lee, D. (eds) Radionanomedicine. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-67720-0_14

Download citation

Publish with us

Policies and ethics