Resource Efficiency Calculation as a Cloud Service

  • Lihui WangEmail author
  • Xi Vincent Wang


Optimising the energy consumption of robot movements has been one of the main focuses for most of today’s robotic simulation software. This optimisation is based on minimising a robot’s joints movements. In many cases, it does not take into consideration the dynamic features. Therefore, reducing energy consumption is still a challenging task and it involves studying the robot’s kinematic and dynamic models together with application requirements. This chapter explains how to minimise the robot energy consumption during assembly. Given a trajectory and based on the inverse kinematics and dynamics of a robot, a set of attainable configurations for the robot can be determined, perused by calculating the suitable forces and torques on the joints and links of the robot. The energy consumption is then calculated for each configuration and based on the assigned trajectory. The ones with the lowest energy consumption are selected. Given that the energy-efficient robot configurations lead to reduced overall energy consumption, this approach becomes instrumental and can be wrapped as a cloud service for energy-efficient robotic assembly.


  1. 1.
    C. Okwudire, J. Rodgers, Design and control of a novel hybrid feed drive for high performance and energy efficient machining. CIRP Ann. - Manuf. Technol. 62(1), 391–394 (2013)CrossRefGoogle Scholar
  2. 2.
    Z. Liu, W. Bu, J. Tan, Motion navigation for arc welding robots based on feature mapping in a simulation environment. Robot. Comput. Integr. Manuf. 26(2), 137–144 (2010)CrossRefGoogle Scholar
  3. 3.
    R. Saravanan, S. Ramabalan, C. Balamurugan, Evolutionary multi-criteria trajectory modeling of industrial robots in the presence of obstacles. Eng. Appl. Artif. Intell. 22(2), 329–342 (2009)CrossRefGoogle Scholar
  4. 4.
    P.G. de Santos, E. Garcia, R. Ponticelli, M. Armada, Minimizing energy consumption in hexapod robots. Adv. Robot. 23(May), 681–704 (2009)CrossRefGoogle Scholar
  5. 5.
    B. Vanderborght, N.G. Tsagarakis, R. Van Ham, I. Thorson, D.G. Caldwell, MACCEPA 2.0: Compliant actuator used for energy efficient hopping robot Chobino1D. Auton. Robots 31(1), 55–65 (2011)CrossRefGoogle Scholar
  6. 6.
    S. Rahimifard, Y. Seow, T. Childs, Minimising embodied product energy to support energy efficient manufacturing. CIRP Ann. - Manuf. Technol. 59(1), 25–28 (2010)CrossRefGoogle Scholar
  7. 7.
    N. Weinert, S. Chiotellis, G. Seliger, Methodology for planning and operating energy-efficient production systems. CIRP Ann. - Manuf. Technol. 60(1), 41–44 (2011)CrossRefGoogle Scholar
  8. 8.
    D. Mourtzis, E. Vlachou, N. Xanthopoulos, M. Givehchi, L. Wang, Cloud-based adaptive process planning considering availability and capabilities of machine tools. J. Manuf. Syst. 39, 1–8 (2016)CrossRefGoogle Scholar
  9. 9.
    M. Mori, M. Fujishima, Y. Inamasu, Y. Oda, A study on energy efficiency improvement for machine tools. CIRP Ann. - Manuf. Technol. 60(1), 145–148 (2011)CrossRefGoogle Scholar
  10. 10.
    A. Vijayaraghavan, D. Dornfeld, Automated energy monitoring of machine tools. CIRP Ann. - Manuf. Technol. 59(1), 21–24 (2010)CrossRefGoogle Scholar
  11. 11.
    T. Behrendt, A. Zein, S. Min, Development of an energy consumption monitoring procedure for machine tools. CIRP Ann. - Manuf. Technol. 61(1), 43–46 (2012)CrossRefGoogle Scholar
  12. 12.
    T. Peng, X. Xu, L. Wang, A novel energy demand modelling approach for CNC machining based on function blocks. J. Manuf. Syst. 33(1), 196–208 (2014)CrossRefGoogle Scholar
  13. 13.
    A. Mohammed, B. Schmidt, L. Wang, L. Gao, Minimizing Energy Consumption for Robot Arm Movement. Procedia CIRP 25, 400–405 (2014)CrossRefGoogle Scholar
  14. 14.
    A. Vergnano et al., Modeling and optimization of energy consumption in cooperative multi-robot systems. Tase 9(2), 423–428 (2012)Google Scholar
  15. 15.
    M. Pellicciari, G. Berselli, F. Leali, A. Vergnano, Mechatronic s A method for reducing the energy consumption of pick-and-place industrial robots. Mechatronics 23(3), 326–334 (2013)CrossRefGoogle Scholar
  16. 16.
    D. Verscheure, B. Demeulenaere, J. Swevers, J. De Schutter, and M. Diehl, Time-Optimal Path Tracking for Robots: A Convex Optimization Approach, 54 (10), 2318–2327 (2009)Google Scholar
  17. 17.
    J.F. Gauthier, J. Angeles, and S. Nokleby, Optimization of a test trajectory for SCARA systems. Adv. Robot Kinemat. Anal. Des. 225–234 (2006)Google Scholar
  18. 18.
    M. Brossog, J. Kohl, J. Merhof, S. Spreng, J. Franke, Energy consumption and dynamic behavior analysis of a six-axis industrial robot in an assembly system. Procedia CIRP 23, 131–136 (2014)CrossRefGoogle Scholar
  19. 19.
    P. Ystgaard, T.B. Gjerstad, T.K. Lien, and P.A. Nyen, “Mapping Energy Consumption for Industrial Robots, 2012Google Scholar
  20. 20.
    R. Chhabra, M. Reza Emami, Holistic system modeling in mechatronics. Mechatronics 21(1), 166–175 (2011)CrossRefGoogle Scholar
  21. 21.
    D. Gielen, M. Taylor, Modelling industrial energy use: The IEAs Energy Technology Perspectives. Energy Econ. 29(4), 889–912 (2007)CrossRefGoogle Scholar
  22. 22.
    J. Gregory, A. Olivares, E. Staffetti, Energy-optimal trajectory planning for robot manipulators with holonomic constraints. Syst. Control Lett. 61(2), 279–291 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    R. Saravanan, S. Ramabalan, C. Balamurugan, Evolutionary optimal trajectory planning for industrial robot with payload constraints. Int. J. Adv. Manuf. Technol. 38(11–12), 1213–1226 (2008)CrossRefGoogle Scholar
  24. 24.
    E.S. Sergaki, G.S. Stavrakakis, A.D. Pouliezos, Optimal robot speed trajectory by minimization of the actuator motor electromechanical losses. J. Intell. Robot. Syst. Theory Appl. 33(2), 187–207 (2002)CrossRefzbMATHGoogle Scholar
  25. 25.
    C. Hansen, J. Oltjen, D. Meike, and T. Ortmaier, Enhanced Approach for Energy-Efficient Trajectory Generation of Industrial Robots, pp. 1–7, 2012Google Scholar
  26. 26.
    P. Matthias and B. Martin, Reducing the energy consumption of industrial robots in manufacturing systems, pp. 1315–1328, 2015Google Scholar
  27. 27.
    J. Denavit, R.S. Hartenberg, A kinematic notation for lower-pair mechanisms based on matrices. J. Appl. Mech. 22, 215–221 (1955)MathSciNetzbMATHGoogle Scholar
  28. 28.
    J.Y.S. Luh, M.W. Walker, R.P.C. Paul, On-Line computational scheme for mechanical manipulators. J. Dyn. Syst. Meas. Control 102(2), 69–76 (1980)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Production EngineeringKTH Royal Institute of TechnologyStockholmSweden

Personalised recommendations