Advertisement

Condition Monitoring for Predictive Maintenance

  • Lihui WangEmail author
  • Xi Vincent Wang
Chapter

Abstract

Advanced manufacturing depends on the timely acquisition, distribution, and utilisation of information from machines and processes across spatial boundaries. These activities can improve accuracy and reliability in predicting resource needs and allocation, maintenance scheduling, and remaining service life of equipment. As an emerging infrastructure, cloud computing provides new opportunities to achieve the goals of advanced manufacturing. This chapter reviews the historical development of prognosis theories and techniques and projects their future growth enabled by the emerging cloud infrastructure. Techniques for cloud computing are highlighted, as well as the influence of these techniques on the paradigm of cloud-enabled prognosis for manufacturing. Finally, this chapter discusses the envisioned architecture and associated challenges of cloud-enabled prognosis for manufacturing.

References

  1. 1.
    R. Gao, L. Wang, R. Teti, D. Dornfeld, S. Kumara, M. Mori, M. Helu, Cloud-enabled prognosis for manufacturing. CIRP Ann. Manuf. Technol. 64(2), 749–772 (2015)Google Scholar
  2. 2.
    C.I. Henschke, D.F. Yankelevitz, D.M. Libby, M.W. Pasmantier, J.P. Smith, O.S. Miettinen, Survival of patients with stage 1 lung cancer detected on CT screening. N. Engl. J. Med. 355(17), 1763–1771 (2006)CrossRefGoogle Scholar
  3. 3.
    M.E. Newman, Spread of epidemic disease on networks. Phys. Rev. E 66(1), 016128 (2002)MathSciNetCrossRefGoogle Scholar
  4. 4.
    T. Gneiting, A.E. Raftery, Weather forecasting with ensemble methods. Science 310(5746), 248–249 (2005)CrossRefGoogle Scholar
  5. 5.
    E.F. Fama, Market efficiency, long-term returns and behavioral finance. J. Financ. Econ. 49(3), 283–306 (1998)CrossRefGoogle Scholar
  6. 6.
    D.J. Inman, C.R. Farrar, J.V. Lopes, J.V. Steffen, Damage Prognosis for Aerospace Civil and Mechanical Systems (John Wiley & Sons Ltd, Chichester, UK, 2005)CrossRefGoogle Scholar
  7. 7.
    G. Vachtsevanos, F. Lewis, M. Roemer, A. Hess, B. Wu, Intelligent Fault Diagnosis and Prognosis for Engineering Systems (John Wiley & Sons, inc., Hoboken, New Jersey, 2006)CrossRefGoogle Scholar
  8. 8.
    A.K.S. Jardine, D. Lin, D. Banjevic, A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Signal Process. 20(7), 1483–1510 (2006)CrossRefGoogle Scholar
  9. 9.
    H.K. Tonshoff, J.P. Wulfsberg, H.J.J. Kals, W. Konig, C.A. van Luttervelt, Development and trends in monitoring and control of machining process. CIRP Ann. Manuf. Technol. 37(2), 611–622 (1988)CrossRefGoogle Scholar
  10. 10.
    K. Jemielniak, Commercial tool condition monitoring systems. Int. J. Adv. Manuf. Technol. 15(10), 711–721 (1999)CrossRefGoogle Scholar
  11. 11.
    Y. Peng, M. Dong, M.J. Zuo, Current status of machine prognostics in condition-based maintenance: a review. Int. J. Adv. Manuf. Technol. 50, 297–313 (2010)CrossRefGoogle Scholar
  12. 12.
    A. Elwany, N. Gebraeel, Sensor driven prognostic models for equipment replacement and sparse parts inventory. IEEE Trans. Ind. Electron. 40(7), 629–639 (2008)Google Scholar
  13. 13.
    P.W. Marksberry, I.S. Jawahir, A comprehensive tool-wear/tool-life performance model in the evaluation of NDM (near dry machining) for sustainable manufacturing. Int. J. Mach. Tools Manuf. 48(7–8), 878–886 (2008)CrossRefGoogle Scholar
  14. 14.
    R. Kothamasu, S. Huang, W. VerDuin, System health monitoring and prognostics-a review of current paradigms and practices. Int. J. Adv. Manuf. Technol. 28, 1012–1024 (2006)CrossRefGoogle Scholar
  15. 15.
    Z.D. Zhou, Y.P. Chen, J.Y.H. Fuh, A.Y.C. Nee, Integrated condition monitoring and fault diagnosis for modern manufacturing systems. CIRP Ann. Manuf. Technol. 49(1), 387–390 (2000)CrossRefGoogle Scholar
  16. 16.
    R. Gouriveau, N. Zerhouni, Connexionist-systems-based long term prediction approaches for prognostics. IEEE Trans. Reliab. 61(4), 909–920 (2012)CrossRefGoogle Scholar
  17. 17.
    B. Sun, S. Zeng, R. Kang, M.G. Pecht, Benefits and challenges of system prognostics. IEEE Trans. Reliab. 61(2), 323–335 (2012)CrossRefGoogle Scholar
  18. 18.
    X.S. Si, W. Wang, C.H. Hu, D.H. Zhou, Remaining useful life estimation–a review on the statistical data driven approaches. Eur. J. Oper. Res. 213(1), 1–14 (2011)MathSciNetCrossRefGoogle Scholar
  19. 19.
    J.Z. Sikorska, M. Hodkiewicz, L. Ma, Prognostic modelling options for remaining useful life estimation by industry. Mech. Syst. Signal Process. 25(5), 1803–1836 (2011)CrossRefGoogle Scholar
  20. 20.
    P. Baraldi, F. Mangili, E. Zio, Investigation of uncertainty treatment capability of model-based and data-driven prognostic methods using simulated data. Reliab. Eng. Syst. Saf. 112, 94–108 (2013)CrossRefGoogle Scholar
  21. 21.
    A. Heng, S. Zhang, A.C. Tan, J. Mathew, Rotating machinery prognostics: state of the art, challenges and opportunities. Mech. Syst. Signal Process. 23(3), 724–739 (2009)CrossRefGoogle Scholar
  22. 22.
    K. Tracht, G. Goch, P. Schuh, M. Sorg, J.F. Westerkamp, Failure probability prediction based on condition monitoring data of wind energy systems for spare parts supply. CIRP Ann. Manuf. Technol. 62(1), 127–130 (2013)CrossRefGoogle Scholar
  23. 23.
    B. Mills, A. Redford, Machinability of Engineering Materials (Applied Science, London, 1983)CrossRefGoogle Scholar
  24. 24.
    H.A. Kishawy, S. Kannan, M. Balazinski, Analytical modeling of tool wear progression during turning particulate reinforced metal matrix composites. CIRP Ann. Manuf. Technol. 54(1), 55–58 (2005)CrossRefGoogle Scholar
  25. 25.
    P.C. Paris, M.P. Gomez, W.E. Anderson, A rational analytic theory of fatigue. The Trend in Engineering 13, 9–14 (1961)Google Scholar
  26. 26.
    K.C. Fan, H.M. Chen, T.H. Kuo, Prediction of machining accuracy degradation of machine tools. Precision Engineering 36, 288–298 (2012)CrossRefGoogle Scholar
  27. 27.
    R. Teti, S.R.T. Kumara, Intelligent computing methods for manufacturing systems. CIRP Ann. Manuf. Technol. 46(2), 629–652 (1997)CrossRefGoogle Scholar
  28. 28.
    H.R. DePold, F.D. Gass, The application of expert systems and neural networks to gas turbine prognostics and diagnostics. J. Eng. Gas Turbines Power 121(4), 607–612 (1999)CrossRefGoogle Scholar
  29. 29.
    J. Dong, K.V.R. Subrahmanyam, Y.S. Wong, G.S. Hong, A.R. Mohanty, Bayesian-inference–based neural networks for tool wear estimation. Int. J. Manuf. Technol. 30, 797–807 (2006)CrossRefGoogle Scholar
  30. 30.
    J.M. Van-Noortwijk, A survey of the application of gamma processes in maintenance. Reliab. Eng. Syst. Saf. 94(1), 2–21 (2009)CrossRefGoogle Scholar
  31. 31.
    L.R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77(2), 257–286 (1988)CrossRefGoogle Scholar
  32. 32.
    F. Camci, R.B. Chinnam, Health-state estimation and prognostics in machining processes. IEEE Trans. Autom. Sci. Eng. 7(3), 581–597 (2010)CrossRefGoogle Scholar
  33. 33.
    P. Baruah, R. Chinnam, HMMs for diagnostics and prognostics in machining processes. Int. J. Prod. Res. 43(6), 1275–1293 (2005)CrossRefzbMATHGoogle Scholar
  34. 34.
    J. Yan, C. Guo, X. Wang, A dynamic multi-scale Markov model based methodology for remaining life prediction. Mech. Syst. Signal Process. 25(4), 1364–1376 (2011)CrossRefGoogle Scholar
  35. 35.
    W. Caesarendra, A. Widodo, P.H. Thom, B.S. Yang, J.D. Setiawan, Combined probability approach and indirect data-driven method for bearing degradation prognostics. IEEE Trans. Reliab. 60(1), 14–20 (2011)CrossRefGoogle Scholar
  36. 36.
    S.J. Engel, B.J. Gilmartin, K. Bongort, A. Hess, Prognostics, the real issues involved with predicting life remaining. IEEE Aerosp. Conf. Proc. 6, 457–470 (2000)Google Scholar
  37. 37.
    D. An, J.H. Choi, T.L. Schmitz, N.H. Kim, In situ monitoring and prediction of progressive joint wear using Bayesian statistics. Wear 270, 828–838 (2011)CrossRefGoogle Scholar
  38. 38.
    G. Welch, G. Bishop, An Introduction to the Kalman Filter (1995)Google Scholar
  39. 39.
    M.S. Arulampalam, S. Maskell, N. Gordon, T. Clapp, A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50(2), 174–188 (2002)CrossRefGoogle Scholar
  40. 40.
    J. Sun, H. Zuo, W. Wang, M.G. Pecht, Application of a state space modeling technique to system prognostics based on a health index for condition-based maintenance. Mech. Syst. Signal Process. 28, 585–596 (2012)CrossRefGoogle Scholar
  41. 41.
    P. Wang, R. Gao, Z. Fan, Switching local search particle filtering applied to heat exchanger system. in Proceedings of 2015 IEEE International Instrumentation and Measurement Technology Conference, Pisa, Italy, May 2015Google Scholar
  42. 42.
    J. Wang, P. Wang, R. Gao, Particle filter for tool wear prediction. in Proceedings of 42nd North American Manufacturing Research Conference, Detroit, Michigan, June 2014Google Scholar
  43. 43.
    A. Saxena, J. Celaya, B. Saha, S. Saha, K. Goeble, Metrics for offline evaluation of prognostic performance. Int. J. Prognostics Health Manage. 1, 4 (2010)Google Scholar
  44. 44.
    F. Zhao, Z. Tian, Y. Zeng, Uncertainty quantification in gear remaining useful life prediction through an integrated prognostics method. IEEE Trans. Reliab. 62(1), 146–159 (2013)CrossRefGoogle Scholar
  45. 45.
    J. Son, Q. Zhou, S. Zhou, X. Mao, M. Salman, Evaluation and comparison of mixed effects model based prognosis for hard failure. IEEE Trans. Reliab. 62(2), 379–394 (2013)CrossRefGoogle Scholar
  46. 46.
    C. Hu, B.D. Youn, P. Wang, J. Taek-Yoon, Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life. Reliab. Eng. Syst. Saf. 103, 120–135 (2012)CrossRefGoogle Scholar
  47. 47.
    J. Sun, H. Zuo, W. Wang, M.G. Pecht, Prognostics uncertainty reduction by fusing on-line monitoring data based on a state-space-based degradation model. Mech. Syst. Signal Process. 45(2), 396–407 (2014)CrossRefGoogle Scholar
  48. 48.
    R. Moghaddass, M.J. Zuo, An integrated framework for online diagnostic and prognostic health monitoring using a multistate deterioration process. Reliab. Eng. Syst. Saf. 124, 92–104 (2014)CrossRefGoogle Scholar
  49. 49.
    Q. Zhang, L. Cheng, R. Boutaba, Cloud computing: state-of-the-art and research challenges. J. Internet Serv. Appl. 1(1), 7–18 (2010)CrossRefGoogle Scholar
  50. 50.
    M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski, M. Zaharia, A view of cloud computing. Commun. ACM 53(4), 50–58 (2010)CrossRefGoogle Scholar
  51. 51.
    L. Ren, L. Zhang, L. Wang, F. Tao, X. Chai, Cloud manufacturing: key characteristics and applications. Int. J. Comput. Integr. Manuf. 30(6), 501–515 (2017)CrossRefGoogle Scholar
  52. 52.
    D. Wu, M.J. Greer, D.W. Rosen, D. Schaefer, Cloud manufacturing: strategic vision and state-of-the-art. J. Manuf. Syst. 32(4), 564–579 (2013)CrossRefGoogle Scholar
  53. 53.
    Y. Yang, R. Gao, Z. Fan, J. Wang, L. Wang, Cloud-based prognosis: perspective and challenge. in Proceedings of the ASME 2014 International Manufacturing Science and Engineering Conference, Detroit, Michigan, USA, June 2014Google Scholar
  54. 54.
    O.F. Valilai, M. Houshmand, A collaborative and integrated platform to support distributed manufacturing system using a service-oriented approach based on cloud computing paradigm. Robot. Comput. Integr. Manuf. 29, 110–127 (2013)CrossRefGoogle Scholar
  55. 55.
    B. Li, L. Zhang, S. Wang, F. Tao, J. Cao, X. Jiang, X. Song, X. Chai, Cloud manufacturing: a new service-oriented networked manufacturing model. Comput. Integr. Manufact. Syst. 16(1), 1–7 (2010)Google Scholar
  56. 56.
    J.D. Goldhar, M. Jelinek, Manufacturing as a service business: CIM in the 21st century. Comput. Ind. 14(1), 225–245 (1990)CrossRefGoogle Scholar
  57. 57.
    T. Masood, R. Roy, A. Harrison, Y. Xu, S. Gregson, C. Reeve, Integrating through-life engineering service knowledge with product design and manufacture. Int. J. Comput. Integr. Manuf. 28(1), 59–74 (2015)CrossRefGoogle Scholar
  58. 58.
    F. Xiang, Y. Hu, in Cloud Manufacturing Resource Access System Based on Internet of Things, ed. by D. Sun et al. Applied Mechanics and Materials, vol. 121–126 (2012), pp. 2421–2425Google Scholar
  59. 59.
    S. Heath, Embedded Systems Design, 2nd edn. (Butterworth-Heinemann, Oxford, UK, 2003)Google Scholar
  60. 60.
    D. Martin, M. Burstein, D. Mcdermott, S. Mcilraith, M. Paolucci, K. Sycara, D.L. Mcguinness, E. Sirin, N. Srinivasan, Bringing semantics to web services with OWL-S. World Wide Web 10(3), 243–277 (2007)CrossRefGoogle Scholar
  61. 61.
  62. 62.
    X.V. Wang, X.W. Xu, An interoperable solution for cloud manufacturing. Robot. Comput. Integr. Manuf. 29(4), 232–247 (2013)MathSciNetCrossRefGoogle Scholar
  63. 63.
    X. Xu, From cloud computing to cloud manufacturing. Robot. Comput. Integr. Manuf. 28, 75–86 (2012)CrossRefGoogle Scholar
  64. 64.
  65. 65.
    W. Venters, E.A. Whitley, A critical review of cloud computing: researching desires and realities. J. Info. Technol. 27, 179–197 (2012)CrossRefGoogle Scholar
  66. 66.
    G. Adamson, L. Wang, M. Holm, P. Moore, Cloud manufacturing—a critical review of recent development and future trends. Int. J. Comput. Integr. Manuf. 30(4–5), 347–380 (2017)Google Scholar
  67. 67.
    S. Abiteboul, I. Manolescu, P. Rigaux, M.C Rousset, P. Senellart, Web data management, (Cambridge University Press, 2011)Google Scholar
  68. 68.
    L. Wang, Machine availability monitoring and machining process planning towards cloud manufacturing. CIRP J. Manufact. Sci. Technol. 6(4), 263–273 (2013)CrossRefGoogle Scholar
  69. 69.
    General Electric, Industrial Internet Insights Report (2015), https://www.gesoftware.com/
  70. 70.
    R. Teti, K. Jemielniak, G. O’Donnell, D. Dornfeld, Advanced monitoring of machining operations. CIRP Ann. Manuf. Technol. 59(2), 717–739 (2010)CrossRefGoogle Scholar
  71. 71.
    M. Mori, M. Fujishima, M. Komatsu, B. Zhao, Y. Liu, Development of remote monitoring and maintenance system for machine tools. CIRP Ann. Manuf. Technol. 57(1), 433–436 (2008)CrossRefGoogle Scholar
  72. 72.
    U.S. Department of Energy, Operations & Maintenance Best Practices: A Guide to Achieving Operational Efficiency (2010)Google Scholar
  73. 73.
    SANY, Heavy Industry (2015), http://www.sanygroup.com/
  74. 74.
    G. Niu, B.S. Yang, M. Pecht, Development of an optimized condition-based maintenance system by data fusion and reliability-centered maintenance. Reliab. Eng. Syst. Saf. 95(7), 786–796 (2010)CrossRefGoogle Scholar
  75. 75.
    L. Dieulle, C. Berenguer, A. Grall, M. Roussignol, Sequential condition-based maintenance scheduling for a deteriorating system. Eur. J. Oper. Res. 150, 451–461 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  76. 76.
    R. Langner, Stuxnet: dissecting a cyberwarfare weapon. IEEE Secur. Priv. 9(3), 49–51 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Production EngineeringKTH Royal Institute of TechnologyStockholmSweden

Personalised recommendations