Advertisement

Machine Availability Monitoring and Process Planning

  • Lihui WangEmail author
  • Xi Vincent Wang
Chapter

Abstract

Cloud manufacturing as a trend of future manufacturing would provide cost-effective, flexible and scalable solutions to companies by sharing manufacturing resources as services with lower support and maintenance costs. Targeting the distributed manufacturing, the scope of this chapter is to present an Internet- and Web-based service-oriented system for machine availability monitoring and process planning. Particularly, this chapter introduces a tiered system architecture and introduces IEC 61499 function blocks for prototype implementation. By connecting to a Wise-ShopFloor framework, it enables real-time machine availability and execution status monitoring during metal-cutting operations, both locally or remotely. The closed-loop information flow makes process planning and monitoring feasible services for the distributed manufacturing.

References

  1. 1.
    X. Xu, From cloud computing to cloud manufacturing. Rob. Comput. Integr. Manuf. 28(1), 75–86 (2012)CrossRefGoogle Scholar
  2. 2.
    A. Vijayaraghavan, W. Sobel, A. Fox, D. Dornfeld, P. Warndorf, Improving machine tool interoperability using standardized interface protocols: MTConnect, in Proceedings of 2008 International Symposium on Flexible Automation (Atlanta, USA, 2008)Google Scholar
  3. 3.
    L. Wang, Wise-ShopFloor: an integrated approach for web-based collaborative manufacturing. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 38(4), 562–573 (2008)Google Scholar
  4. 4.
    L. Alting, H. Zhang, Computer aided process planning: the state-of-the-art survey. Int. J. Prod. Res. 27(4), 553–585 (1989)CrossRefGoogle Scholar
  5. 5.
    L. Wang, D.H. Norrie, Process planning and control in a holonic manufacturing environment. J. Appl. Syst. Stud. 2(1), 106–126 (2001)Google Scholar
  6. 6.
    Y. Zhang, S.C. Feng, X. Wang, W. Tian, R. Wu, Object oriented manufacturing resource modeling for adaptive process planning. Int. J. Prod. Res. 37(18), 4179–4195 (1999)CrossRefzbMATHGoogle Scholar
  7. 7.
    P. Xirouchakis, D. Kiritsis, J.-G. Persson, A petrinet technique for process planning cost estimation. Ann. CIRP. 47(1), 427–430 (1998)CrossRefGoogle Scholar
  8. 8.
    M.W. Park, H.M. Rho, B.T. Park, Generation of modified cutting condition using neural network for an operation planning system. Ann. CIRP. 45(1), 475–478 (1996)CrossRefGoogle Scholar
  9. 9.
    C.R. Devireddy, K. Ghosh, Feature-based modeling and neural network-based CAPP for integrated manufacturing. Int. J. Comput. Integr. Manuf. 12(1), 61–74 (1999)CrossRefGoogle Scholar
  10. 10.
    L. Monostori, Z.J. Viharos, S. Markos, Satisfying various requirements in different levels and stages of machining using one general ANN-based process model. J. Mater. Process. Technol. 107, 228–235 (2000)CrossRefGoogle Scholar
  11. 11.
    F. Zhang, Y.F. Zhang, A.Y.C. Nee, Using genetic algorithms in process planning for job shop machining. IEEE Trans. Evol. Comput. 1(4), 278–289 (1997)CrossRefGoogle Scholar
  12. 12.
    A. Márkus, J. Váncza, A. Kovács, Constraint-based process planning in sheet metal bending. Ann. CIRP. 51(1), 425–428 (2002)CrossRefGoogle Scholar
  13. 13.
    P. Gu, S. Balasubramanian, D.H. Norrie, Bidding-based process planning and scheduling in a multi-agent system. Comput. Ind. Eng. 32(2), 477–496 (1997)CrossRefGoogle Scholar
  14. 14.
    D. Lutters, T.C. Wijnker, H.J.J. Kals, Information management in process planning. Ann. CIRP. 48(1), 385–388 (1999)CrossRefGoogle Scholar
  15. 15.
    B. Denkena, M. Shpitalni, P. Kowalski, G. Molcho, Y. Zipori, Knowledge management in process planning. Annals of the CIRP. 56(1), 175–180 (2007)CrossRefGoogle Scholar
  16. 16.
    S.H. Yeo, B.K.A. Ngoi, H. Chen, Process sequence optimization based on a new cost-tolerance model. J. Intell. Manuf. 9, 29–37 (1998)CrossRefGoogle Scholar
  17. 17.
    T. Lim, J. Corney, J.M. Ritchie, D.E.R. Clark, Optimizing tool selection. Int. J. Prod. Res. 39(6), 1239–1256 (2001)CrossRefzbMATHGoogle Scholar
  18. 18.
    B. Arezoo, K. Ridgway, A.M.A. Al-Ahmari, Selection of cutting tools and conditions of machining operations using an expert system. Comput. Ind. 42, 43–58 (2000)CrossRefGoogle Scholar
  19. 19.
    R.M. Boogert, H.J. Kals, F.J. van Houten, Tool paths and cutting technology in computer-aided process planning. Int. J. Adv. Manuf. Technol. 11, 186–197 (1996)CrossRefGoogle Scholar
  20. 20.
    S.K. Ong, A.Y.C. Nee, Fuzzy-set-based approach for concurrent constraint setup planning. J. Intell. Manuf. 7(2), 107–120 (1996)CrossRefGoogle Scholar
  21. 21.
    L. Wang, H.-Y. Feng, N. Cai, Architecture design for distributed process planning. J. Manuf. Syst. 22(2), 99–115 (2003)CrossRefGoogle Scholar
  22. 22.
    L. Wang, M. Holm, G. Adamson, Embedding a process plan in function blocks for adaptive machining. CIRP Ann. Manuf. Technol. 59(1), 433–436 (2010)CrossRefGoogle Scholar
  23. 23.
    A. Azab, H.A. ElMaraghy, Mathematical modeling for reconfigurable process planning. Ann. CIRP. 56(1), 467–472 (2007)CrossRefGoogle Scholar
  24. 24.
    K. Ueda, N. Fujii, R. Inoue, An emergent synthesis approach to simultaneous process planning and scheduling. Ann. CIRP. 56(1), 463–466 (2007)CrossRefGoogle Scholar
  25. 25.
    S.T. Newman, A. Nassehi, Machine tool capability profile for intelligent process planning. Ann. CIRP. 58(1), 421–424 (2009)CrossRefGoogle Scholar
  26. 26.
    S.T. Newman, A. Nassehi, R. Imani-Asrai, V. Dhokia, Energy efficient process planning for CNC machining. CIRP J. Manuf. Sci. Technol. 5(2), 127–136 (2012)CrossRefGoogle Scholar
  27. 27.
    Z. Xu, M. Cai, L. Lin, J. Dong, Study of networked manufacturing oriented cooperative CAPP system, in Proceedings of the 9th International Conference on Computer Supported Cooperative Work in Design (Coventry, UK, 2005)Google Scholar
  28. 28.
    C.F. You, C.H. Lin, Java-based computer-aided process planning. Int. J. Adv. Manuf. Technol. 26(9–10), 1063–1070 (2005)CrossRefGoogle Scholar
  29. 29.
    Z.M. Qiu, Y.P. Chen, Z.D. Zhou, S.K. Ong, A.Y.C. Nee, Multi-user NC machining simulation over the WWW. Int. J. Adv. Manuf. Technol. 18, 1–6 (2001)CrossRefGoogle Scholar
  30. 30.
    W. Liu, G. Peng, An internet-enabled setup planning system, in Proceedings of 3rd International Conference on Information Technology and Applications (Sydney, 2005)Google Scholar
  31. 31.
    R. Agrawal, S.K. Shukla, S. Kumar, M.K. Tiwari, Multi-agent system for distributed computer-aided process planning problem in e-manufacturing environment. Int. J. Adv. Manuf. Technol. 44(5–6), 579–594 (2009)CrossRefGoogle Scholar
  32. 32.
    L. Wang, N. Cai, H.-Y. Feng, Z. Liu, Enriched machining feature based reasoning for generic machining process sequencing. Int. J. Prod. Res. 44(8), 1479–1501 (2006)CrossRefzbMATHGoogle Scholar
  33. 33.
    L. Wang, Y. Song, Q. Gao, Designing function blocks for distributed process planning and adaptive control. Eng. Appl. Artif. Intell. 22(7), 1127–1138 (2009)CrossRefGoogle Scholar
  34. 34.
    L. Min, B. Li, S. Zhang, Modeling integrated CAPP/PPS systems. Comput. Ind. Eng. 46(2), 275–283 (2004)CrossRefGoogle Scholar
  35. 35.
    J. Ciurana, M.L. Garcia-Romeu, I. Ferrer, M. Casadesus, A model for integrating process planning and production planning and control in machining processes. Rob. Compu. Integr. Manuf. 24(4), 532–544 (2008)CrossRefGoogle Scholar
  36. 36.
    D.N. Sormaz, B. Khoshnevis, Generation of alternative process plans in integrated manufacturing systems. J. Intell. Manuf. 14(6), 509–526 (2003)CrossRefGoogle Scholar
  37. 37.
    S. Kernbaum, S. Heyer, S. Chiotellis, G. Seliger, Process planning for IT-equipment remanufacturing. CIRP J. Manuf. Sci. Technol. 2(1), 13–20 (2009)CrossRefGoogle Scholar
  38. 38.
    X. Xu, L. Wang, S.T. Newman, Computer-aided process planning—a critical review of recent developments and future trends. Int. J. Comput. Integr. Manuf. 24(1), 1–31 (2011)CrossRefGoogle Scholar
  39. 39.
    L. Wang, J. Ma, F.-Y. Feng, Web-DPP: towards job-shop machining process planning and monitoring. Int. J. Manuf. Res. 6(4), 337–353 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Production EngineeringKTH Royal Institute of TechnologyStockholmSweden

Personalised recommendations