Advertisement

Big Data Analytics for Scheduling and Machining

  • Lihui WangEmail author
  • Xi Vincent Wang
Chapter

Abstract

In modern manufacturing industries, defect prediction and prevention are the key features. In this context, this chapter introduces a big data analytics based approach to scheduling and machining. In order to minimise machining errors in advance, a big data analytics based fault prediction approach is presented first for shop-floor scheduling, where machining tasks, machining resources, and machining processes are represented by data attributes. Based on the available data on the shop floor, the potential fault/error patterns, referring to machining errors, machine faults, maintenance states etc., are mined to discover unsuitable scheduling arrangements before machining as well as upcoming errors during machining. Targeting a global machining optimisation, this chapter then presents a big data analytics based optimisation method for machining process planning. Within the context, the machining factors are represented by data attributes, i.e. workpiece, machining requirement, machine tool, cutting tool, machine condition, machining process, machining result, etc. The problem of machining optimisation is treated as a statistical problem.

References

  1. 1.
    R.C. Tryon, Cluster Analysis: Correlation Profile and Orthometric (factor) Analysis for the Isolation of Unities in Mind and Personality (Edwards Brothers, 1939)Google Scholar
  2. 2.
    D.B. Kenneth, Numerical Taxonomy and Cluster Analysis (SAGE Publications, 1994)Google Scholar
  3. 3.
    D.J. Bartholomew, F. Steele, J. Galbraith, I. Moustaki, Analysis of Multivariate Social Science Data (Taylor & Francis, 2008)Google Scholar
  4. 4.
    J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, A.H. Byers, Big Data: The Next Frontier for Innovation, Competition, and Productivity (McKinsey Global Institute, 2011)Google Scholar
  5. 5.
    D. Hand, H. Mannila, P. Smyth, Principles of Data Mining (The MIT Press, Cambridge, Massachusetts, London, England, 2001)Google Scholar
  6. 6.
    K. Dnuggets, What Analytics, Data Mining, Data Science Software/Tools You Used in the Past 12 Months for a Real Project Poll (2016)Google Scholar
  7. 7.
    A.S. Manne, On the Job-Shop Scheduling Problem. Oper. Res. 8(2), 219–223 (1960)MathSciNetCrossRefGoogle Scholar
  8. 8.
    G. Laporte, J.J. Salazar-GonzÁLez, F. Semet, Exact algorithms for the job sequencing and tool switching problem. IIE Trans. 36(1), 37–45 (2004)CrossRefGoogle Scholar
  9. 9.
    P. Asokan, J. Jerald, S. Arunachalam, T. Page, Application of adaptive genetic algorithm and particle swarm optimisation in scheduling of jobs and AS/RS in FMS. Int. J. Manuf. Res. 3(4), 393–405 (2008)CrossRefGoogle Scholar
  10. 10.
    B. Khoshnevis, Q.M. Chen, Integration of process planning and scheduling functions. J. Intell. Manuf. 2(3), 165–175 (1991)CrossRefGoogle Scholar
  11. 11.
    Q. Chen, B. Khoshnevis, Scheduling with flexible process plans. Prod. Plan. Control 4(4), 333–343 (1993)CrossRefGoogle Scholar
  12. 12.
    W. Tan, B. Khoshnevis, Integration of process planning and scheduling—A review. J. Intell. Manuf. 11(1), 51–63 (2000)CrossRefGoogle Scholar
  13. 13.
    P. Mohapatra, A. Nayak, S.K. Kumar, M.K. Tiwari, Multi-objective process planning and scheduling using controlled elitist non-dominated sorting genetic algorithm. Int. J. Prod. Res. 53(6), 1712–1735 (2014)CrossRefGoogle Scholar
  14. 14.
    M. Freitag, T. Hildebrandt, Automatic design of scheduling rules for complex manufacturing systems by multi-objective simulation-based optimization. CIRP Ann.—Manuf. Technol. 65(1), 433–436 (2016)CrossRefGoogle Scholar
  15. 15.
    X. Li, L. Gao, C. Zhang, X. Shao, A review on Integrated Process Planning and Scheduling. Int. J. Manuf. Res. 5(2), 161–180 (2010)CrossRefGoogle Scholar
  16. 16.
    M. Rajkumar, P. Asokan, T. Page, S. Arunachalam, A GRASP algorithm for the integration of process planning and scheduling in a flexible job-shop. Int. J. Manuf. Res. 5(2), 230–251 (2010)CrossRefGoogle Scholar
  17. 17.
    C. Gahm, F. Denz, M. Dirr, A. Tuma, Energy-efficient scheduling in manufacturing companies: a review and research framework. Eur. J. Oper. Res. 248(3), 744–757 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    P.M. Khodke, A.S. Bhongade, Real-time scheduling in manufacturing system with machining and assembly operations: a state of art. Int. J. Prod. Res. 51(16), 4966–4978 (2013)CrossRefGoogle Scholar
  19. 19.
    G.E. Vieira, J.W. Herrmann, E. Lin, Rescheduling manufacturing systems: a framework of strategies, policies, and methods. J. Sched. 6(1), 39–62 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    M. Ham, Y.H. Lee, S.H. Kim, Real-time scheduling of multi-stage flexible job shop floor. Int. J. Prod. Res. 49(12), 3715–3730 (2011)CrossRefGoogle Scholar
  21. 21.
    K. Iwamura, N. Okubo, Y. Tanimizu, N. Sugimura, Real-time scheduling for holonic manufacturing systems based on estimation of future status. Int. J. Prod. Res. 44(18–19), 3657–3675 (2006)CrossRefzbMATHGoogle Scholar
  22. 22.
    C. Wang, H. Ghenniwa, W. Shen, Real time distributed shop floor scheduling using an agent-based service-oriented architecture. Int. J. Prod. Res. 46(9), 2433–2452 (2008)CrossRefzbMATHGoogle Scholar
  23. 23.
    Y. Yih, A. Thesen, Semi-Markov decision models for real-time scheduling. Int. J. Prod. Res. 29(11), 2331–2346 (1991)CrossRefzbMATHGoogle Scholar
  24. 24.
    R. Zhou, H.P. Lee, A.Y.C. Nee, Applying Ant Colony Optimisation (ACO) algorithm to dynamic job shop scheduling problems. Int. J. Manuf. Res. 3(3), 301–320 (2008)CrossRefGoogle Scholar
  25. 25.
    G. Metan, I. Sabuncuoglu, H. Pierreval, Real time selection of scheduling rules and knowledge extraction via dynamically controlled data mining. Int. J. Prod. Res. 48(23), 6909–6938 (2010)CrossRefGoogle Scholar
  26. 26.
    V.K. Jain, S. Premalatha, N. Baskar, Implementation of supervised statistical data mining algorithm for single machine scheduling. J. Adv. Manag. Res. 9(2), 170–177 (2012)CrossRefGoogle Scholar
  27. 27.
    W. Kohn, V. Brayman, J. Littleton, Repair-control of enterprise systems using RFID sensory data. IIE Trans. 37(4), 281–290 (2005)CrossRefGoogle Scholar
  28. 28.
    C. Wang, P. Jiang, Manifold learning based rescheduling decision mechanism for recessive disturbances in RFID-driven job shops (J. Intell, Manuf, 2016)Google Scholar
  29. 29.
    T. Qu, H.D. Yang, G.Q. Huang, Y.F. Zhang, H. Luo, W. Qin, A case of implementing RFID-based real-time shop-floor material management for household electrical appliance manufacturers. J. Intell. Manuf. 23(6), 2343–2356 (2012)CrossRefGoogle Scholar
  30. 30.
    X. Xu, L. Wang, S.T. Newman, Computer-aided process planning—A critical review of recent developments and future trends. Int. J. Comput. Integr. Manuf. 24(1), 1–31 (2011)CrossRefGoogle Scholar
  31. 31.
    M.S. Chua, H.T. Loh, Y.S. Wong, Optimization of cutting conditions for multi-pass turning operations using sequential quadratic programming. J. Mater. Process. Technol. 28(1–2), 253–262 (1991)CrossRefGoogle Scholar
  32. 32.
    S.H. Yeo, A multipass optimization strategy for CNC lathe operations. Int. J. Prod. Econ. 40(2–3), 209–218 (1995)CrossRefGoogle Scholar
  33. 33.
    M.S. Akturk, S. Avci, An integrated process planning approach for CNC machine tools. Int. J. Adv. Manuf. Technol. 12(3), 221–229 (1996)CrossRefGoogle Scholar
  34. 34.
    I. Lazoglu, S.Y. Liang, Analytical modeling of force system in ball-end milling. Mach. Sci. Technol. 1(2), 219–234 (1997)CrossRefGoogle Scholar
  35. 35.
    Y.K. Yang, M.T. Chuang, S.S. Lin, Optimization of dry machining parameters for high-purity graphite in end milling process via design of experiments methods. J. Mater. Process. Technol. 209(9), 4395–4400 (2009)CrossRefGoogle Scholar
  36. 36.
    C.C. Chen, K.T. Chiang, C.C. Chou, Y.C. Liao, The use of D-optimal design for modeling and analyzing the vibration and surface roughness in the precision turning with a diamond cutting tool. Int. J. Adv. Manuf. Technol. 54(5–8), 465–478 (2011)CrossRefGoogle Scholar
  37. 37.
    W. Ji, X. Liu, L. Wang, S. Sun, Experimental evaluation of polycrystalline diamond (PCD) tool geometries at high feed rate in milling of titanium alloy TC11. Int. J. Adv. Manuf. Technol. 77(9–12), 1549–1555 (2015)CrossRefGoogle Scholar
  38. 38.
    J. Zhang, S.Y. Liang, D. Yen, Optimisation of the finish hard turning process for hardened 52100 steel with PCBN tools. Int. J. Manuf. Res. 2(4), 428–447 (2007)CrossRefGoogle Scholar
  39. 39.
    W. Li, S.K. Ong, A.Y.C. Nee, Optimization of process plans using a constraint-based tabu search approach. Int. J. Prod. Res. 42(10), 1955–1985 (2004)CrossRefzbMATHGoogle Scholar
  40. 40.
    J.G. Taiber, Optimization of process sequences considering prismatic workpieces. Adv. Eng. Softw. 25(1), 41–50 (1996)CrossRefGoogle Scholar
  41. 41.
    S.Y. Wei, C.C. Lo, C.A. Chang, Using throughput profit for selecting manufacturing process plan. Comput. Ind. Eng. 32(4), 939–948 (1997)CrossRefGoogle Scholar
  42. 42.
    G.H. Ma, Y.F. Zhang, A.Y.C. Nee, A simulated annealing-based optimization algorithm for process planning. Int. J. Prod. Res. 38(12), 2671–2687 (2000)CrossRefGoogle Scholar
  43. 43.
    D.H. Lee, D. Kiritsis, P. Xirouchakis, Search heuristics for operation sequencing in process planning. Int. J. Prod. Res. 39(16), 3771–3788 (2001)CrossRefzbMATHGoogle Scholar
  44. 44.
    D.H. Lee, D. Kiritsis, P. Xirouchakis, Branch and fathoming algorithms for operation sequencing in process planning. Int. J. Prod. Res. 39(8), 1649–1669 (2001)CrossRefzbMATHGoogle Scholar
  45. 45.
    D.H. Lee, D. Kiritsis, P. Xirouchakis, Iterative approach to operation selection and sequencing in process planning. Int. J. Prod. Res. 42(22), 4745–4766 (2004)CrossRefzbMATHGoogle Scholar
  46. 46.
    Y.C. Wang, T. Chen, Modelling and optimization of machining conditions for the multi-pass dry turning process. Proc. Inst. Mech. Eng. Part B-Journal Eng. Manuf. 222(11), 1387–1394 (2008)Google Scholar
  47. 47.
    K. Abhishek, S. Datta, S.S. Mahapatra, Multi-objective optimization in drilling of CFRP (polyester) composites: application of a fuzzy embedded harmony search (HS) algorithm. Measurement 77, 222–239 (2016)CrossRefGoogle Scholar
  48. 48.
    D.P. Gupta, B. Gopalakrishnan, S.A. Chaudhari, S. Jalali, Development of an integrated model for process planning and parameter selection for machining processes. Int. J. Prod. Res. 49(21), 6301–6319 (2011)CrossRefGoogle Scholar
  49. 49.
    A. Sluga, M. Jermol, D. Zupanic, D. Mladenic, Machine learning approach to analysis. Comput. Ind. 37(3), 185–196 (1998)CrossRefGoogle Scholar
  50. 50.
    L. Monostori, Z.J. Viharos, S. Markos, Satisfying various requirements in different levels and stages of machining using one general ANN-based process model. J. Mater. Process. Technol. 107(1–3), 228–235 (2000)CrossRefGoogle Scholar
  51. 51.
    W.D. Li, S.K. Ong, A.Y.C. Nee, Hybrid genetic algorithm and simulated annealing approach for the optimization of process plans for prismatic parts. Int. J. Prod. Res. 40(8), 1899–1922 (2002)CrossRefzbMATHGoogle Scholar
  52. 52.
    T.N. Wong, L.C.F. Chan, H.C.W. Lau, Machining process sequencing with fuzzy expert system and genetic algorithms. Eng. Comput. 19(2–3), 191–202 (2003)CrossRefGoogle Scholar
  53. 53.
    M. Salehi, A. Bahreininejad, Optimization process planning using hybrid genetic algorithm and intelligent search for job shop machining. J. Intell. Manuf. 22(4), 643–652 (2011)CrossRefGoogle Scholar
  54. 54.
    M. Petrovic, M. Mitic, N. Vukovic, Z. Miljkovic, Chaotic particle swarm optimization algorithm for flexible process planning. Int. J. Adv. Manuf. Technol. 85(9–12), 2535–2555 (2016)CrossRefGoogle Scholar
  55. 55.
    A.K. Choudhary, J.A. Harding, M.K. Tiwari, Data mining in manufacturing: a review based on the kind of knowledge. J. Intell. Manuf. 20(5), 501–521 (2008)CrossRefGoogle Scholar
  56. 56.
    Y. Zhang, S. Ren, Y. Liu, S. Si, A big data analytics architecture for cleaner manufacturing and maintenance processes of complex products. J. Clean. Prod (2016)Google Scholar
  57. 57.
    R.Y. Zhong, G.Q. Huang, S. Lan, Q.Y. Dai, X. Chen, T. Zhang, A big data approach for logistics trajectory discovery from RFID-enabled production data. Int. J. Prod. Econ. 165, 260–272 (2015)CrossRefGoogle Scholar
  58. 58.
    R.F. Babiceanu, R. Seker, Big data and virtualization for manufacturing cyber-physical systems: a survey of the current status and future outlook. Comput. Ind. 81, 128–137 (2016)CrossRefGoogle Scholar
  59. 59.
    J. Woo, S.J. Shin, W. Seo, Developing a big data analytics platform for increasing sustainability performance in machining operations (Flexible Automation and Intelligent Manufacturing, Seoul, Korea, 2016), pp. 1–8Google Scholar
  60. 60.
    W. Ji, L. Wang, Big data analytics based fault prediction for shop floor scheduling. J. Manuf. Syst. 43, 187–194 (2017)CrossRefGoogle Scholar
  61. 61.
    H. Müller, Problems, methods, and challenges in comprehensive data cleansing (Humboldt-Universität zu Berlin zu Berlin, Berlin, Germany, 2005)Google Scholar
  62. 62.
    M. Lenzerini, Data integration: a theoretical perspective, in Proceedings of the Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium (2002), pp. 233–246Google Scholar
  63. 63.
    J.R. Quinlan, Simplifying decision trees. Int. J. Man Mach. Stud. 27(3), 221–234 (1987)CrossRefGoogle Scholar
  64. 64.
    S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach (Prentice Hall, Egnlewood Cliffs, New Jersey, 1995)zbMATHGoogle Scholar
  65. 65.
    T.D. Nielsen, F.V. Jensen, Bayesian Networks and Decision Graphs (Springer Science & Business Media, 2009)Google Scholar
  66. 66.
    M.T. Hagan, H.B. Demuth, M.H. Beale, O. De Jesús, Neural Network Design (PWS Publishing Company Boston, Boston, MA, US, 1996)Google Scholar
  67. 67.
    C. Cortes, V. Vapnik, Support vector networks. Mach. Learn. 20(3), 273–297 (1995)zbMATHGoogle Scholar
  68. 68.
    R. Agrawal, R. Srikant, Fast algorithms for mining association rules. Proc. 20th Int. Conf. Very Large Data Bases 1215, 487–499 (1994)Google Scholar
  69. 69.
    D.W. Aha, Lazy learning, in Lazy Learning, ed. by W.A. David (Kluwer Academic Publishers, 1997), pp. 7–10Google Scholar
  70. 70.
    M. Melanie, An Introduction to Genetic Algorithms (MIT Press, Cambridge, Massachusetts, London, England, 1999)zbMATHGoogle Scholar
  71. 71.
    Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning about Data (Springer, Netherlands, 1991)CrossRefzbMATHGoogle Scholar
  72. 72.
    L.A. Zadeh, Fuzzy sets. Inf. Control 8(3), 338–353 (1965)CrossRefzbMATHGoogle Scholar
  73. 73.
    J. Han, J. Pei, M. Kamber, Data Mining: Concepts and Techniques (Elsevier, 2011)Google Scholar
  74. 74.
    W. Ji, L. Wang, Big data analytics based optimisation for enriched process planning: a methodology. Procedia CIRP 63, 161–166 (2017)CrossRefGoogle Scholar
  75. 75.
    L. Wang, W. Shen, DPP: An agent-based approach for distributed process planning. J. Intell. Manuf. 14(5), 429–439 (2003)CrossRefGoogle Scholar
  76. 76.
    L. Wang, H.Y. Feng, N. Cai, Architecture design for distributed process planning. J. Manuf. Syst. 22(2), 99–115 (2003)CrossRefGoogle Scholar
  77. 77.
    L. Wang, Web-based decision making for collaborative manufacturing. Int. J. Comput. Integr. Manuf. 22(4), 334–344 (2009)CrossRefGoogle Scholar
  78. 78.
    L. Wang, Machine availability monitoring and machining process planning towards Cloud manufacturing. CIRP J. Manuf. Sci. Technol. 6(4), 263–273 (2013)CrossRefGoogle Scholar
  79. 79.
    L. Wang, Cyber manufacturing: research and applications, in Proceedings of the TMCE, Budapest (2014), pp. 39–49Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Production EngineeringKTH Royal Institute of TechnologyStockholmSweden

Personalised recommendations