Skip to main content

Basic of 3D Echocardiography; Clinical Use in Daily Practice

  • Chapter
  • First Online:
Case-Based Textbook of Echocardiography

Abstract

Three-dimensional echocardiography (3DE) represents a major innovation and revolution in the field of cardiovascular ultrasound. Advances in computer and transducer technologies has permitted real-time 3DE acquisition and presentations of cardiac structures from any spatial point of view. 3D transesophageal echocardiography (3D TEE) creates a “common language” between echo cardiologist, cardiac surgeon, and cardiac interventionist in the operating room and cath lab for appropriate decision-making. In this chapter, technical background and modes of image acquisition are extensively reviewed. Introduction of xMATRIX technology has enabled utilization of more than 3000 fully sampled elements for 360º focusing and steering. With this powerful technology built in echo probes, any plane of the heart can be imaged. Further advancements in computer technology in speedy processing of the acquired data has resulted in creating images with high temporal and spatial resolutions in a single-beat acquisition format. Nowadays 3DE is becoming part of the routine echocardiography modality. Its role in diagnosis and management of valvular heart disease, cardiac chamber quantification, cardiac masses, and congenital heart disease are discussed in this chapter. The emerging and unique role of 3D TEE in guiding surgical and percutaneous interventions are of importance and will be discussed as well. 3DE is a new modality and like any other new techniques has its own limitations and pitfalls. Low spatial and temporal resolutions, motion and stitch artifacts, and lack of direct 3D measurements are the major limitations. Further technical improvements will heighten its role as the first cardiac imaging modality in our daily practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3DE:

Three-dimensional echocardiography

2D:

Two-dimensional

ALC:

Anterolateral commissure

AoV:

Aortic valve

ASE:

American society of echocardiography

CHD:

Congenital heart disease

CS:

Coronary sinus

EACVI:

European association of cardiovascular imaging

fps:

Frame per second

HVR:

High volume rate

IAS:

Interatrial septum

IVC:

Inferior vena cava

LA:

Left atrium

LAA:

Left atrial appendage

LAPV:

Left upper pulmonary vein

LCC :

Left coronary cusp

LUPV:

Left upper pulmonary vein

LV:

Left ventricle

LVOT:

Left ventricular outflow tract

MI:

Myocardial infarction

MPA:

Main pulmonary artery

MPR:

Multiplanar reconstruction

MR:

Mitral regurgitation

MS:

Mitral stenosis

MV:

Mitral valve

MVA:

Mitral valve area

NCC:

Non-coronary cusp

PISA:

Proximal isovelocity surface area

PMC:

Posteromedial commissure

PR:

Pulmonary regurgitation

PV:

Pulmonic valve

PVR:

Pulmonic valve replacement

RA:

Right atrium

RAA:

Right atrial appendage

RCC:

Right coronary cusp

RV:

Right ventricle

RVOT:

Right ventricular outflow tract

TAVI:

Transcatheter aortic valve implantation

TEE:

Transesophageal echocardiography

TR:

Tricuspid regurgitation

TS:

Tricuspid stenosis

TTE:

Transthoracic echocardiography

TV:

Tricuspid valve

References

  1. Dekker DL, Pizaili RL, Dong E Jr. A system for ultrasonically imaging the human heart in three dimensions. Comput Biomed Res. 1974;7(6):544–53.

    Article  CAS  Google Scholar 

  2. Pandian NG, Nanda NC, Schwarts SL, Fan P, Cao QL, Sanyal R, et al. Three-dimensional and four-dimensional transesophageal echocardiographic imaging of the heart and aorta in humans using a computed tomographic imaging probe. Echocardiography. 1992;9(6):677–87.

    Article  CAS  Google Scholar 

  3. Levine RA, Handschumacher MD, Sanfilippo AJ, Hagege AA, Harrigan P, Marshall JE, et al. Three-dimensional echocardiographic reconstruction of the mitral valve, with implications for the diagnosis of mitral valve prolapse. Circulation. 1989;80(3):589–98.

    Article  CAS  Google Scholar 

  4. Sugeng L, Weinert L, Thiele K, Lang RM. Real-time 3-dimensional echocardiography using a novel matrix array transducer. Echocardiography. 2003;20(7):623–35.

    Article  Google Scholar 

  5. Lang RM, Badano PB, Tsang W, Adams DH, Agricola E, Buck T, et al. EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. J Am Soc Echocardiogr. 2012;25:3–46.

    Article  Google Scholar 

  6. Vegas A. Three-dimensional transesophageal echocardiography: principles and clinical applications. Ann Card Anaesth. 2016;19(Special Issue 1):S35–43.

    Article  Google Scholar 

  7. Omran AS, Woo A, David TEE, Feindel CM, Rakowski H, Siu SC. Intraoperative transesophageal echocardiography accurately predicts mitral valve anatomy and suitability for repair. J Am Soc Echocardiogr. 2002;15:950–7.

    Article  Google Scholar 

  8. Salcedo EE, Quiafe RA, Seres T, Carroll JD. A framework for systematic characterization of the mitral valve by real-time three-dimensional transesophageal echocardiography. J Am Soc Echocardiogr. 2009;22:1087–99.

    Article  Google Scholar 

  9. Apor A, Nagy AI, Kovacs A, Manouras A, Andrassy P, Merkely B. Three-dimensional dynamic morphology of the mitral valve in different forms of mitral valve prolapse-potential implications for annuloplasty ring selection. Cardiovasc Ultrasound. 2016;14(32):1–7.

    Google Scholar 

  10. Pierce EL, Pierre J, Rabbah JPM, Thiele K, Wei Q, Vidakovic B, et al. Three-dimensional field optimization method: Gold-standard validation of a novel color Doppler method for quantifying mitral regurgitation. J Am Soc Echocardiogr. 2016;29:917–25.

    Article  Google Scholar 

  11. Tan TC, Zeng X, Jiao Y, Wang L, Wei Q, Thiele K, et al. Three-dimensional field optimization method: clinical validation of a novel color Doppler method for quantifying mitral regurgitation. J Am Soc Echocardiogr. 2016;29:926–34.

    Article  Google Scholar 

  12. Sardari Nia P, Heuts S, Daemen J, Luyten P, Vainer J, Hoorntje J, et al. Preoperative planning with three-dimensional reconstruction of patient’s anatomy, rapid prototyping and simulation for endoscopic mitral valve repair. Interact Cardiovasc Thorac Surg. 2016:1–6.

    Google Scholar 

  13. Jin CN, Salgo IS, Schneider RJ, Kam KKH, Chi WK, So CU, et al. Using anatomic intelligence to localize mitral valve prolapse on three-dimensional echocardiography. J Am Soc Echocardiogr. 2016;29:938–45.

    Article  Google Scholar 

  14. Machino-Ohtsuka T, Seo Y, Ishizu T, Sato K, Sugano A, Yamamoto M, et al. Novel mechanistic insights into atrial functional mitral regurgitation. 3-dimentional echocardiography study. Circ J. 2016;80:2240–8.

    Article  Google Scholar 

  15. Owais K, Montealegre-Gallegos M, Jeganathan J, Matyal R, Khabbaz KR, Mahmood F. Dynamic changes in the ischemic mitral annulus: implication for ring sizing. Ann Card Anaesth. 2016;9:15–9.

    Google Scholar 

  16. Regeer MV, Kamperidis V, Versteegh MIM, Schalij MJ, Marsan NA, Bax JJ, et al. Three-dimensional transesophageal echocardiography of the aortic valve and root changes in aortic root dilatation. Eur Heart J Cardiovasc Imaging. 2016;13:1–8.

    Google Scholar 

  17. Knio Z, Montealegre-Gallegos M, Yeh L, Chaudary B, Jeganathan J, Matyal R, et al. Tricuspid annulus: a spatial and temporal analysis. Ann Card Anaesth. 2016;19:599–605.

    Article  Google Scholar 

  18. Han J, He Y, Gu X, Sun L, Zhao Y, Liu W, et al. Echocardiographic diagnosis and outcome of pseudoaneurysm of the mitral-aortic intervalvular fibrosa. Medicine. 2016;95:1–6.

    Article  Google Scholar 

  19. Janardhanan R, Umar Kamal M, Riaz IB, Smith MC. Anterior mitral valve aneurysm: a rare sequelae of aortic valve endocarditis. Echores Pract. 2016:K7–K13.

    Article  Google Scholar 

  20. Lancelloti P, Pibarot P, Chsambers J, Edvardsen T, Delgado V. Dulgheru, et al. Recommendations for the imaging assessment of prosthetic heart valves: a report from the European Association of Cardiovascular Imaging, the Inter-American Society of Echocardiography, and the Brazilian Department of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2016;17:589–90.

    Article  Google Scholar 

  21. Arribas-Jimenesz A, Rama-Merchan J, Barreiro-Perez M, Merchan-Gomez S, Iscar- Galan A, Martin-Garcia A, et al. Utility of real-time 3-dimensional transesophageal echocardiography in the assessment of mitral paravalvular leak. Circ J. 2016;80:738–44.

    Article  Google Scholar 

  22. Saric M, Armour AC, Arnaout MS, Chaudhry FA, Grimm RA, Kronzon I, et al. Guidelines for the use of echocardiography in the evaluation of a cardiac source of embolism. J Am Soc Echocardiogr. 2016;29:1–42.

    Article  Google Scholar 

  23. Espinola-Zavaleta N, Lozoya-Del Rosal JJ, Colin-Lizalde L, Lupi-Herrera E. Left atrial cardiac myxoma: two unusual cases studied by 3D echocardiography. BMJ Case Rep. 2014.

    Google Scholar 

  24. Hadeed K, Hascoet S, Amadieu R, Karsenty C, Cuttone F, Leobon B, et al. Assessment of ventricular septal defect size and morphology by three-dimensional transthoracic echocardiography. J Am Soc Echocardiogr. 2016;29:777–85.

    Article  Google Scholar 

  25. Hammerstingl C, Schueler R, Malasa M, Werner N, Nickenig G. Transcatheter treatment of severe tricuspid regurgitation with the MitraClip system. Eur Heart J. 2016;37:849–53.

    Article  Google Scholar 

  26. Nejjari M, Himbert D, Brochet E, Attias D. First-in-man full percutaneous valve-in-valve implantations using Edwards SAPIEN 3 prostheses to treat a patient with degenerated mitral and aortic bioprosthesis. Interact Cardiovasc Thorac Surg. 2016;23:505–10.

    Article  Google Scholar 

  27. Simpson J, Lopez L, Acar P, Friedberg M, Khoo N, Ko H, et al. Three-dimensional echocardiography in congenital heart disease: an expert consensus document from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. Eur Heart J Cardiovasc Imaging. 2016;17:1071–97.

    Article  Google Scholar 

  28. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Emande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28:1–39.

    Article  Google Scholar 

  29. Tsang W, Salgo I, Medvedofsky D, Takeuchi M, Prater D, Weinert L, et al. Transthoracic left heart chamber quantification using an automated adaptive analytics algorithm. J Am Coll Cardiol Img. 2016;9:769–82.

    Article  Google Scholar 

  30. Otani K, Nakazono A, Salgo I, Lang R. Three-dimensional echocardiographic assessment of left heart chamber size and function with fully automated quantification software in patients with atrial fibrillations. J Am Soc Echocardiogr. 2016;29:955–65.

    Article  Google Scholar 

  31. Faletra FF, Ramamurthi A, Dequarti MC, Leo LA, Moccetti T, Pandian N. Artifacts in three-dimensional transesophageal echocardiography. J Am Soc Echocardiogr. 2014;27:453–62.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Omran, A.S. (2018). Basic of 3D Echocardiography; Clinical Use in Daily Practice. In: Sadeghpour, A., Alizadehasl, A. (eds) Case-Based Textbook of Echocardiography. Springer, Cham. https://doi.org/10.1007/978-3-319-67691-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67691-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67689-0

  • Online ISBN: 978-3-319-67691-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics