Advertisement

Comfort: A Coordinate of User Experience in Interactive Built Environments

  • Hamed S. Alavi
  • Himanshu Verma
  • Michael Papinutto
  • Denis Lalanne
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10515)

Abstract

Comfort as a technical term in the domain of architecture has been used meticulously to describe, assess, and understand some of the essential qualities of buildings, across four dimensions: visual, thermal, acoustic, and respiratory. This body of knowledge can be drawn upon to shed light on the growing branch of HCI that pursues a shift from “artifact” to “environment” (and from “usability” to “comfort”). We contribute to this conceptual-contextual transition in three consecutive steps: (1) sketch the outline of comfort studies in the scholar field of Architecture and the ones in Human-Computer Interaction, (2) propose a schematic model of comfort that captures its interactive characteristics and, (3) demonstrate an interactive tool, called ComfortBox, that we prototyped to help answer some of the research questions about the perception of comfort in built environments.

Keywords

Human-Building Interaction Comfort Adaptive architecture 

References

  1. 1.
    Dourish, P.: Where the Action is: The Foundations of Embodied Interaction. MIT Press, Cambridge (2004)Google Scholar
  2. 2.
    Ingram, B.: Feature-learning from architecture. Interactions 16(6), 64–67 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Alexander, C., Ishikawa, S., Silverstein, M., i Ramió, J.R., Jacobson, M., Fiksdahl-King, I.: A Pattern Language. Gustavo Gili, Barcelona (1977)Google Scholar
  4. 4.
    Brand, S.: How Buildings Learn: What Happens After They’re Built. Penguin, Westminster (1995)Google Scholar
  5. 5.
    Mitchell, W.J.: City of Bits: Space, Place, and the Infobahn. MIT Press, Cambridge (1996)Google Scholar
  6. 6.
    Spiller, N., et al.: Digital Architecture now: A Global Survey of Emerging Talent. Thames & Hudson, London (2008)Google Scholar
  7. 7.
    Alavi, H.S., Churchill, E., Kirk, D., Nembrini, J., Lalanne, D.: Deconstructing human-building interaction. Interactions 23(6), 60–62 (2016)CrossRefGoogle Scholar
  8. 8.
    Verma, H., Alavi, H.S., Lalanne, D.: Studying space use: bringing HCI tools to architectural projects. In: Proceedings of CHI 2017, ACM (2017)Google Scholar
  9. 9.
    Alavi, H.S., Lalanne, D., Nembrini, J., Churchill, E., Kirk, D., Moncur, W.: Future of human-building interaction. In: Proceedings of CHI 2016 Extended Abstracts. ACM (2016)Google Scholar
  10. 10.
    Hawkes, D.: The environmental Imagination: Technics and Poetics of the Architectural Environment. Taylor & Francis, Milton Park (2008)Google Scholar
  11. 11.
    Bluyssen, P.M.: The Indoor Environment Handbook: How to Make Buildings Healthy and Comfortable. Earthscan, Abingdon (2009)Google Scholar
  12. 12.
    Fanger, P.O.: Thermal Comfort. McGraw-Hill, New York (1970). Danish tec editionGoogle Scholar
  13. 13.
    Hopkinson, R.G.: Architectural physics: lighting (1963)Google Scholar
  14. 14.
    Bornehag, C.G., Sundell, J., Weschler, C.J., Sigsgaard, T., Lundgren, B., Hasselgren, M., Hagerhed-Engman, L.: The association between asthma and allergic symptoms in children and phthalates in house dust: a nested case-control study. Environ. Health Perspect. 112(14), 1393–1397 (2004)CrossRefGoogle Scholar
  15. 15.
    Fisk, W.J., Lei-Gomez, Q., Mendell, M.J.: Meta-analyses of the associations of respiratory health effects with dampness and mold in homes. Indoor Air 4, 284–296 (2007)CrossRefGoogle Scholar
  16. 16.
    De Dear, R.J., Brager, G.S., Reardon, J., Nicol, F., et al.: Developing an adaptive model of thermal comfort and preference/discussion. ASHRAE Trans. 104, 145 (1998)Google Scholar
  17. 17.
    ASHRAE Standard. Standard 55–2013. Thermal environmental conditions for human occupancy (2013)Google Scholar
  18. 18.
    CEN. Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics. European Committee for Standardization, Belgium (2007)Google Scholar
  19. 19.
    CEN. Light and lighting-lighting of work places-part 1: Indoor work places. European Committee for Standardization, Brussels, Belgium (2002)Google Scholar
  20. 20.
    EN CEN. Acoustics - description, measurement and assessment of environmental noise - part 1: basic quantities and assessment procedures. European Committee for Standardization, Brussels, Belgium (2016)Google Scholar
  21. 21.
    Janssen, J.E.: Ventilation for acceptable indoor air quality. ASHRAE J. 31(10), 40–48 (1989)Google Scholar
  22. 22.
    Cole, R., Lorch, R.: Buildings Culture and Environment. Wiley, Hoboken (2007)Google Scholar
  23. 23.
    Chappells, H., Shove, E.: Debating the future of comfort: environmental sustainability, energy consumption and the indoor environment. Build. Res. Inf. 33(1), 32–40 (2005)CrossRefGoogle Scholar
  24. 24.
    Shafaghat, A., Keyvanfar, A., Ferwati, M.S., Alizadeh, T.: Enhancing staff’s satisfaction with comfort toward productivity by sustainable open plan office design. Sustain. Cities Soc. 19, 151–164 (2015)CrossRefGoogle Scholar
  25. 25.
    Preiser, W.F., White, E., Rabinowitz, H.: Post-Occupancy Evaluation (Routledge Revivals). Routledge, Abingdon (2015)Google Scholar
  26. 26.
    Wagner, A., Gossauer, E., Moosmann, C., Gropp, T., Leonhart, R.: Thermal comfort and workplace occupant satisfaction results of field studies in German low energy office buildings. Energy Build. 39(7), 758–769 (2007)CrossRefGoogle Scholar
  27. 27.
    Bluyssen, P., Aries, M., Dommelen, P.: Comfort of workers in office buildings: the European HOPE project. Build. Environ. 46(1), 280–288 (2011)CrossRefGoogle Scholar
  28. 28.
    Yao, Y., Lian, Z., Liu, W., Shen, Q.: Experimental study on physiological responses and thermal comfort under various ambient temperatures. Physiol. Behav. 93(1), 310–321 (2008)CrossRefGoogle Scholar
  29. 29.
    Yao, Y., Lian, Z., Liu, W., Jiang, C., Liu, Y., Lu, H.: Heart rate variation and electroencephalograph-the potential physiological factors for thermal comfort study. Indoor Air 19(2), 93–101 (2009)CrossRefGoogle Scholar
  30. 30.
    DiSalvo, C., Sengers, P., Brynjarsdóttir, H.: Mapping the landscape of sustainable HCI. In: Proceedings of CHI 2010, pp. 1975–1984. ACM (2010)Google Scholar
  31. 31.
    Milenkovic, M., Hanebutte, U., Huang, Y., Prendergast, D., Pham, H.: Improving user comfort and office energy efficiency with POEM (personal office energy monitor). In: CHI 2013 Extended Abstracts. ACM (2013)Google Scholar
  32. 32.
    Alan, A.T., Shann, M., Costanza, E., Ramchurn, S.D., Seuken, S.: It is too hot: an in-situ study of three designs for heating. In: Proceedings of CHI 2016, pp. 5262–5273. ACM (2016)Google Scholar
  33. 33.
    Costanza, E., Bedwell, B., Jewell, M.O., Colley, J., Rodden, T.: ‘A bit like British weather, i suppose’: design and evaluation of the temperature calendar. In: Proceedings of CHI 2016, pp. 4061–4072. ACM (2016)Google Scholar
  34. 34.
    Kim, S., Paulos, E.: InAir: measuring and visualizing indoor air quality. In: Proceedings of UbiComp 2009, pp. 81–84. ACM (2009)Google Scholar
  35. 35.
    Chen, X., Zheng, Y., Chen, Y., Jin, Q., Sun, W., Chang, E., Ma, W.Y.: Indoor air quality monitoring system for smart buildings. In: Proceedings of UbiComp 2014, pp. 471–475. ACM (2014)Google Scholar
  36. 36.
    Jiang, Y., Li, K., Tian, L., Piedrahita, R., Yun, X., Mansata, O., Lv, Q., Dick, R.P., Hannigan, M., Shang, L.: Maqs: a mobile sensing system for indoor air quality. In: Proceedings of UbiComp 2011. ACM (2011)Google Scholar
  37. 37.
    Frešer, M., Gradišek, A., Cvetković, B., Luštrek, M.: An intelligent system to improve T-H-C parameters at the workplace. In: Proceedings of UbiComp 2016 Adjunct, pp. 61–64. ACM (2016)Google Scholar
  38. 38.
    Krantz, J.: Experiencing Sensation and Perception. Pearson Education (US), New York (2012)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  • Hamed S. Alavi
    • 1
    • 2
  • Himanshu Verma
    • 1
  • Michael Papinutto
    • 1
    • 3
  • Denis Lalanne
    • 1
  1. 1.Human-IST Research CenterUniversity of FribourgFribourgSwitzerland
  2. 2.Swiss Federal Institute of Technology (EPFL)LausanneSwitzerland
  3. 3.Visual and Social Neuroscience UnitUniversity of FribourgFribourgSwitzerland

Personalised recommendations