Advertisement

Human-Building Interaction: When the Machine Becomes a Building

  • Julien Nembrini
  • Denis Lalanne
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10514)

Abstract

Acknowledging the current digitalizing of buildings and their existence as interactive objects, this article sets out to consolidate Human-Building Interaction (HBI) as a new research domain within HCI. It exposes fundamental characteristics of HBI such as user immersion in the “machine” and extensive space and time scales, and proposes an operational definition of the domain. Building upon a comprehensive survey of relevant cross-disciplinary research, HBI is characterized in terms of dimensions representing the interaction space and modalities that can be invoked to enhance interactions. Specific methodological challenges are discussed, and illustrative research projects are presented demonstrating the relevance of the domain. New directions for future research are proposed, pointing out the domain’s potentially significant impact on society.

Keywords

Human-Building Interaction Home automation Smart home Interactive architecture Comfort Energy efficiency 

Notes

Acknowledgements

The authors would like to thank Agnes Lisowska for her suggestions and English language corrections, as well as the anonymous reviewers for their constructive comments.

References

  1. 1.
    Aarts, E., de Ruyter, B.: New research perspectives on ambient intelligence. J. Ambient Intell. Smart Environ. 1(1), 5–14 (2009)Google Scholar
  2. 2.
    Abrahamse, W., Steg, L., Vlek, C., Rothengatter, T.: A review of intervention studies aimed at household energy conservation. J. Environ. Psychol. 25(3), 273–291 (2005)CrossRefGoogle Scholar
  3. 3.
    Alan, A.T., Shann, M., Costanza, E., Ramchurn, S.D., Seuken, S.: It is too hot: an in-situ study of three designs for heating. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, CHI 2016, pp. 5262–5273. ACM, New York (2016)Google Scholar
  4. 4.
    Alavi, H.S., Churchill, E., Kirk, D., Nembrini, J., Lalanne, D.: Deconstructing human-building interaction. Interactions 23(6), 60–62 (2016)CrossRefGoogle Scholar
  5. 5.
    Alavi, H.S., Lalanne, D., Nembrini, J., Churchill, E., Kirk, D., Moncur, W.: Future of human-building interaction. In: Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, CHI EA 2016, pp. 3408–3414. ACM, New York (2016)Google Scholar
  6. 6.
    Alcalá, J., Parson, O., Rogers, A.: Detecting anomalies in activities of daily living of elderly residents via energy disaggregation and cox processes. In: Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient Built Environments, BuildSys 2015, pp. 225–234. ACM, New York (2015)Google Scholar
  7. 7.
    Andersen, M.: Unweaving the human response in daylighting design. Build. Environ. 91, 101–117 (2015)CrossRefGoogle Scholar
  8. 8.
    Augusto, J.C., Callaghan, V., Cook, D., Kameas, A., Satoh, I.: Intelligent environments: a manifesto. Hum.-Centric Comput. Inf. Sci. 3(1), 12 (2013)CrossRefGoogle Scholar
  9. 9.
    Baeriswyl, R.: Visualization of multivariate building data by spatiotemporal building models. Technical report, Human-IST research Centre, University of Fribourg, Fribourg, Switzerland (2015)Google Scholar
  10. 10.
    Balaji, B., Koh, J., Weibel, N., Agarwal, Y.: Genie: a longitudinal study comparing physical and software thermostats in office buildings. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp 2016, pp. 1200–1211, ACM, New York (2016)Google Scholar
  11. 11.
    Bier, H.: Robotic building(s). Next Gener. Build. 1(1), 83–92 (2014)Google Scholar
  12. 12.
    Brand, S.: How Buildings Learn: What Happens After They’re Built. Viking, New York (1994)Google Scholar
  13. 13.
    Brehmer, M., Ng, J., Tate, K., Munzner, T.: Matches, mismatches, and methods: multiple-view workflows for energy portfolio analysis. IEEE Trans. Vis. Comput. Graph. 22(1), 449–458 (2016)CrossRefGoogle Scholar
  14. 14.
    Brewer, R.S., Verdezoto, N., Rasmussen, M.K., Entwistle, J.M., Grønbæk, K., Blunck, H., Holst, T.: Challenge: getting residential users to shift their electricity usage patterns. In: Proceedings of the 2015 ACM Sixth International Conference on Future Energy Systems, e-Energy 2015, pp. 83–88. ACM, New York (2015)Google Scholar
  15. 15.
    Brush, A.B., Lee, B., Mahajan, R., Agarwal, S., Saroiu, S., Dixon, C.: Home automation in the wild: challenges and opportunities. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2011, pp. 2115–2124. ACM, New York (2011)Google Scholar
  16. 16.
    Chetty, M., Tran, D., Grinter, R.E.: Getting to green: understanding resource consumption in the home. In: Proceedings of the 10th International Conference on Ubiquitous Computing, UbiComp 2008. pp. 242–251. ACM, New York (2008)Google Scholar
  17. 17.
    Clear, A.K., Morley, J., Hazas, M., Friday, A., Bates, O.: Understanding adaptive thermal comfort: new directions for UbiComp. In: Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp 2013, pp. 113–122. ACM, New York (2013)Google Scholar
  18. 18.
    Cook, D.J., Augusto, J.C., Jakkula, V.R.: Ambient intelligence: technologies, applications, and opportunities. Pervasive Mob. Comput. 5(4), 277–298 (2009)CrossRefGoogle Scholar
  19. 19.
    Cook, D.J., Krishnan, N.: Mining the home environment. J. Intell. Inf. Syst. 43(3), 503–519 (2014)CrossRefGoogle Scholar
  20. 20.
    Costanza, E., Fischer, J.E., Colley, J.A., Rodden, T., Ramchurn, S.D., Jennings, N.R.: Doing the laundry with agents: a field trial of a future smart energy system in the home. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2014, pp. 813–822. ACM, New York (2014)Google Scholar
  21. 21.
    Costanza, E., Ramchurn, S.D., Jennings, N.R.: Understanding domestic energy consumption through interactive visualisation: a field study. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing, UbiComp 2012, pp. 216–225. ACM, New York (2012)Google Scholar
  22. 22.
    Coughlan, T., Brown, M., Martindale, S., Comber, R., Ploetz, T., Leder Mackley, K., Mitchell, V., Baurley, S.: Methods for studying technology in the home. In: CHI 2013 Extended Abstracts on Human Factors in Computing Systems, CHI EA 2013, pp. 3207–3210. ACM, New York (2013)Google Scholar
  23. 23.
    Crabtree, A., Tolmie, P.: A day in the life of things in the home, pp. 1736–1748. ACM Press (2016)Google Scholar
  24. 24.
    Dalton, N., Green, K.E., Dalton, R., Wiberg, M., Hoelscher, C., Mathew, A., Schnädelbach, H., Varoudis, T.: Interaction and architectural space. In: CHI 2014 Extended Abstracts on Human Factors in Computing Systems, CHI EA 2014, pp. 29–32. ACM, New York (2014)Google Scholar
  25. 25.
    Day, J.K., Gunderson, D.E.: Understanding high performance buildings: the link between occupant knowledge of passive design systems, corresponding behaviors, occupant comfort and environmental satisfaction. Build. Environ. 84, 114–124 (2015)CrossRefGoogle Scholar
  26. 26.
    de Dear, R.J., Akimoto, T., Arens, E.A., Brager, G., Candido, C., Cheong, K.W.D., Li, B., Nishihara, N., Sekhar, S.C., Tanabe, S., Toftum, J., Zhang, H., Zhu, Y.: Progress in thermal comfort research over the last twenty years. Indoor Air 23(6), 442–461 (2013)CrossRefGoogle Scholar
  27. 27.
    de Wilde, P.: The gap between predicted and measured energy performance of buildings: a framework for investigation. Autom. Constr. 41, 40–49 (2014)CrossRefGoogle Scholar
  28. 28.
    Fanger, P.O., et al.: Thermal Comfort. Analysis and Applications in Environmental Engineering (1970)Google Scholar
  29. 29.
    Fischer, J.E., Crabtree, A., Rodden, T., Colley, J.A., Costanza, E., Jewell, M.O., Ramchurn, S.D.: “Just whack it on until it gets hot”: working with IoT data in the home. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, CHI 2016, pp. 5933–5944. ACM, New York (2016)Google Scholar
  30. 30.
    Frontczak, M., Wargocki, P.: Literature survey on how different factors influence human comfort in indoor environments. Build. Environ. 46(4), 922–937 (2011)CrossRefGoogle Scholar
  31. 31.
    Gaver, W., Boucher, A., Law, A., Pennington, S., Bowers, J., Beaver, J., Humble, J., Kerridge, T., Villar, N., Wilkie, A.: Threshold devices: looking out from the home. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2008, pp. 1429–1438. ACM, New York (2008)Google Scholar
  32. 32.
    Haldi, F., Robinson, D.: Interactions with window openings by office occupants. Build. Environ. 44(12), 2378–2395 (2009)CrossRefGoogle Scholar
  33. 33.
    Haldi, F., Robinson, D.: On the unification of thermal perception and adaptive actions. Build. Environ. 45(11), 2440–2457 (2010)CrossRefGoogle Scholar
  34. 34.
    Hanssens, N., Kulkarni, A., Tuchida, R., Horton, T.: Building agent-based intelligent workspaces. In: International Conference on Internet Computing, pp. 675–681. Citeseer (2002)Google Scholar
  35. 35.
    Hektner, J.M., Schmidt, J.A., Csikszentmihalyi, M.: Experience Sampling Method: Measuring the Quality of Everyday Life. SAGE (2007). Google-Books-ID: 05e5dKBYY0CGoogle Scholar
  36. 36.
    Hong, T., Yan, D., D’Oca, S., Chen, C.F.: Ten questions concerning occupant behavior in buildings: the big picture. Build. Environ. 114, 518–530 (2017)CrossRefGoogle Scholar
  37. 37.
    Horvitz, E.: Principles of mixed-initiative user interfaces. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 1999, pp. 159–166. ACM, New York (1999)Google Scholar
  38. 38.
    Huang, C.C.J., Yang, R., Newman, M.W.: The potential and challenges of inferring thermal comfort at home using commodity sensors. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp 2015, pp. 1089–1100. ACM, New York (2015)Google Scholar
  39. 39.
    Jazizadeh, F., Ghahramani, A., Becerik-Gerber, B., Kichkaylo, T., Orosz, M.: Human-building interaction framework for personalized thermal comfort-driven systems in office buildings. J. Comput. Civil Eng. 28(1), 2–16 (2014)CrossRefGoogle Scholar
  40. 40.
    Kang, R., Dabbish, L., Fruchter, N., Kiesler, S.: My data just goes everywhere: user mental models of the internet and implications for privacy and security. In: Symposium on Usable Privacy and Security (SOUPS) (2015)Google Scholar
  41. 41.
    Karjalainen, S.: Should it be automatic or manual–the occupant’s perspective on the design of domestic control systems. Energy Build. 65, 119–126 (2013)CrossRefGoogle Scholar
  42. 42.
    Kingma, B., van Marken Lichtenbelt, W.: Energy consumption in buildings and female thermal demand. Nat. Clim. Change 5(12), 1054–1056 (2015)CrossRefGoogle Scholar
  43. 43.
    Kluckner, P.M., Weiss, A., Schrammel, J., Tscheligi, M.: Exploring persuasion in the home: results of a long-term study on energy consumption behavior. In: Augusto, J.C., Wichert, R., Collier, R., Keyson, D., Salah, A.A., Tan, A.-H. (eds.) AmI 2013. LNCS, vol. 8309, pp. 150–165. Springer, Cham (2013). doi: 10.1007/978-3-319-03647-2_11 CrossRefGoogle Scholar
  44. 44.
    Knecht, K., Bryan-Kinns, N., Shoop, K.: Usability and design of personal wearable and portable devices for thermal comfort in shared work environments. In: Proceedings of the 30th International BCS Human Computer Interaction Conference: Fusion!, HCI 2016, pp. 41:1–41:12. BCS Learning & Development Ltd., Swindon (2016)Google Scholar
  45. 45.
    Kueper, R.: Relationship between subjective comfort perception and smartphone sensor data. Technical report, Human-IST research Centre, University of Fribourg, Fribourg, Switzerland (2015)Google Scholar
  46. 46.
    Lahoual, D., Fréjus, M.: Sustainability at home: an exploratory study on monitoring needs and energy management actions of solar power producers. In: Kotzé, P., Marsden, G., Lindgaard, G., Wesson, J., Winckler, M. (eds.) INTERACT 2013. LNCS, vol. 8120, pp. 125–132. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40498-6_9 CrossRefGoogle Scholar
  47. 47.
    Lalanne, D., Alavi, H.S., Nembrini, J., Verman, H.: Human-building interaction in the smart living lab. In: Future of Human-Building Interaction Workshop at the 34rd Annual ACM Conference on Human Factors in Computing Systems (CHI 2016). ACM (2016)Google Scholar
  48. 48.
    Langevin, J., Gurian, P.L., Wen, J.: Tracking the human-building interaction: a longitudinal field study of occupant behavior in air-conditioned offices. J. Environ. Psychol. 42, 94–115 (2015)CrossRefGoogle Scholar
  49. 49.
    Lehrer, D., Vasudev, J.: Visualizing energy information in commercial buildings: a study of tools, expert users, and building occupants. Technical report, Center for the Built Environment, UC Berkeley (2011)Google Scholar
  50. 50.
    Lucon, O., Ürge-Vorsatz, D., Ahmed, A.Z., Akbari, H., Bertoldi, P., Cabeza, L.F., Eyre, N., Gadgil, A., Harvey, L.D., Jiang, Y., et al.: Buildings. In: Mitigation of Climate Change. Contribution of Working Group III to the Fifth IPCC Report, pp. 671–738. Cambridge University Press, Cambridge, and New York (2014)Google Scholar
  51. 51.
    Mennicken, S., Kim, D., Huang, E.M.: Integrating the smart home into the digital calendar. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, CHI 2016, pp. 5958–5969. ACM, New York (2016)Google Scholar
  52. 52.
    Mennicken, S., Vermeulen, J., Huang, E.M.: From today’s augmented houses to tomorrow’s smart homes: new directions for home automation research. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp 2014, pp. 105–115. ACM, New York (2014)Google Scholar
  53. 53.
    Miller, C., Nagy, Z., Schlueter, A.: Automated daily pattern filtering of measured building performance data. Autom. Constr. 49(Part A), 1–17 (2015)CrossRefGoogle Scholar
  54. 54.
    Mynatt, E.D., Rowan, J., Craighill, S., Jacobs, A.: Digital family portraits: supporting peace of mind for extended family members. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2001, pp. 333–340. ACM, New York (2001)Google Scholar
  55. 55.
    Nguyen, T.A., Aiello, M.: Energy intelligent buildings based on user activity: a survey. Energy Build. 56, 244–257 (2013)CrossRefGoogle Scholar
  56. 56.
    O’Brien, W., Gunay, H.B.: The contextual factors contributing to occupants’ adaptive comfort behaviors in offices - a review and proposed modeling framework. Build. Environ. 77, 77–87 (2014)CrossRefGoogle Scholar
  57. 57.
    Pierce, J., Paulos, E.: Beyond energy monitors: interaction, energy, and emerging energy systems. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 665–674. ACM (2012)Google Scholar
  58. 58.
    Ranjan, J., Scott, J.: ThermalSense: determining dynamic thermal comfort preferences using thermographic imaging. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp 2016, pp. 1212–1222. ACM, New York (2016)Google Scholar
  59. 59.
    Rodden, T., Benford, S.: The evolution of buildings and implications for the design of ubiquitous domestic environments. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2003, pp. 9–16. ACM, New York (2003)Google Scholar
  60. 60.
    Rogers, Y., Hazlewood, W.R., Marshall, P., Dalton, N., Hertrich, S.: Ambient influence: can twinkly lights lure and abstract representations trigger behavioral change? In: Proceedings of the 12th ACM International Conference on Ubiquitous Computing, UbiComp 2010, pp. 261–270. ACM, New York (2010)Google Scholar
  61. 61.
    Rouvinez, T.: Real time tracking and visualization of indoor social interactions. Technical report, Human-IST research Centre, University of Fribourg, Fribourg, Switzerland (2015)Google Scholar
  62. 62.
    Ruby, A.: Lacaton & Vassal. Editions HYX, Orléans (2009)Google Scholar
  63. 63.
    Schwartz, T., Stevens, G., Jakobi, T., Denef, S., Ramirez, L., Wulf, V., Randall, D.: What people do with consumption feedback: a long-term living lab study of a home energy management system. Interact. Comput. 27(6), 551–576 (2015)CrossRefGoogle Scholar
  64. 64.
    Thomas, B.L., Cook, D.J.: Activity-aware energy-efficient automation of smart buildings. Energies 9(8), 624 (2016)CrossRefGoogle Scholar
  65. 65.
    Verma, H., Alavi, H.S., Lalanne, D.: Studying space use: bringing HCI tools to architectural projects. In: CHI 2017, Denver, CA, USA, 06–11 May 2017Google Scholar
  66. 66.
    Winkler, D.A., Beltran, A., Esfahani, N.P., Maglio, P.P., Cerpa, A.E.: FORCES: feedback and control for occupants to refine comfort and energy savings. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp 2016, pp. 1188–1199. ACM, New York (2016)Google Scholar
  67. 67.
    Yan, D., O’Brien, W., Hong, T., Feng, X., Burak Gunay, H., Tahmasebi, F., Mahdavi, A.: Occupant behavior modeling for building performance simulation: current state and future challenges. Energy Build. 107, 264–278 (2015)CrossRefGoogle Scholar
  68. 68.
    Yang, L., Yan, H., Lam, J.C.: Thermal comfort and building energy consumption implications - a review. Appl. Energy 115, 164–173 (2014)CrossRefGoogle Scholar
  69. 69.
    Yang, R., Newman, M.W.: Learning from a learning thermostat: lessons for intelligent systems for the home. In: Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp 2013, pp. 93–102. ACM, New York (2013)Google Scholar
  70. 70.
    Yang, R., Pisharoty, D., Montazeri, S., Whitehouse, K., Newman, M.W.: How does eco-coaching help to save energy? Assessing a recommendation system for energy-efficient thermostat scheduling. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp 2016, pp. 1176–1187. ACM, New York (2016)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  1. 1.Human-IST Research CenterUniversity of FribourgFribourgSwitzerland

Personalised recommendations