FeetForward: On Blending New Classroom Technologies into Secondary School Teachers’ Routines

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10514)

Abstract

Secondary school teachers have complex, intensive and dynamic routines in their classrooms, which makes their attentional resources limited for human-computer interaction. Leveraging principles of peripheral interaction can reduce attention demanded by technologies and interactions could blend more seamlessly into the everyday routine. We present the design and deployment of FeetForward - an open-ended, and foot-based peripheral interface to facilitate teachers’ use of interactive whiteboards. FeetForward was used as a technology probe to explore the design of new classroom technologies which are to become peripheral and routine. The deployment took place with three teachers in their classrooms for five weeks. Based on in-depth and longitudinal interviews with the teachers, we discuss about how FeetForward integrated into teachers’ routines, what its effects were on teaching and whether its foot-based interaction style was suitable for peripheral interaction. Subsequently, implications on design of peripheral classroom technologies were generalized.

Keywords

Peripheral interaction Classroom technology Foot-based interaction Secondary school teacher Calm technology Interactive whiteboard 

References

  1. 1.
    An, P., Bakker, S., Eggen, B.: Understanding teachers’ routines to inform classroom technology design. Educ. Inf. Technol. 22, 1347–1376 (2017)CrossRefGoogle Scholar
  2. 2.
    Doyle, W.: Learning the classroom environment: an ecological analysis of induction into teaching (1977)Google Scholar
  3. 3.
    Brante, G.: Multitasking and synchronous work: complexities in teacher work. Teach. Teach. Educ. 25, 430–436 (2009). doi:10.1016/j.tate.2008.09.015 CrossRefGoogle Scholar
  4. 4.
    Ten Brummelhuis, H., Kramer, M., Post, P., Zintel, C.: Vier in balans-monitor 2015. In: Kennisnet (2015). https://www.kennisnet.nl/fileadmin/kennisnet/publicatie/vierinbalans/Vier_in_balans_monitor_2015.pdf
  5. 5.
  6. 6.
  7. 7.
  8. 8.
    Bakker, S., Niemantsverdriet, K.: The interaction-attention continuum: considering various levels of human attention in interaction design. Int. J. Des. 10(2), 1–14 (2016)Google Scholar
  9. 9.
    Cuban, L., Kirkpatrick, H., Peck, C.: High access and low use of technologies in high school classrooms: explaining an apparent paradox. Am. Educ. Res. J. 38, 813–834 (2001). doi:10.3102/00028312038004813 CrossRefGoogle Scholar
  10. 10.
    Urhahne, D., Schanze, S., Bell, T., et al.: Role of the teacher in computer-supported collaborative inquiry learning. Int. J. Sci. Educ. 32, 221–243 (2010). doi:10.1080/09500690802516967 CrossRefGoogle Scholar
  11. 11.
    Bakker, S., Hausen, D., Selker, T.: Introduction: framing peripheral interaction. In: Bakker, S., Hausen, D., Selker, T. (eds.) Peripheral Interaction. HIS, pp. 1–10. Springer, Cham (2016). doi:10.1007/978-3-319-29523-7_1 CrossRefGoogle Scholar
  12. 12.
    Zimmerman, J., Forlizzi, J., Evenson, S.: Research through design as a method for interaction design research in HCI. In: Proceedings of SIGCHI Conference on Human factors Computing Systems - CHI 2007, pp. 493–502 (2007) doi:10.1145/1240624.1240704
  13. 13.
    Hutchinson, H., Hansen, H., Roussel, N., et al.: Technology probes. In: Proceedings of Conference on Human factors Computing System - CHI 2003, p. 17. ACM Press, New York, USA (2013)Google Scholar
  14. 14.
  15. 15.
    Weiser, M., Brown, J.S.: The coming age of calm technology. In: Denning, P.J., Metcalfe, R.M. (eds.) Beyond Calculation, pp. 75–85. Springer, NewYork (1997). doi:10.1007/978-1-4612-0685-9_6 CrossRefGoogle Scholar
  16. 16.
    Matthews, T., Rattenbury, T., Carter, S.: Defining, designing, and evaluating peripheral displays - an analysis using activity theory. Hum.-Comput. Interact. 22, 221–261 (2007). doi:10.1080/07370020701307997 Google Scholar
  17. 17.
    Mankoff, J., Dey, A.K., Hsieh, G., et al.: Heuristic evaluation of ambient displays. In: Proceedings of Conference on Human factors Computing System - CHI 2003, p. 169. ACM Press, New York, USA (2003)Google Scholar
  18. 18.
    van Alphen, E., Bakker, S.: Lernanto. In: Proceedings of 2016 CHI Conference on Extended Abstract Human Factors Computing Systems - CHI EA 2016, pp. 2334–2340. ACM Press, New York, USA (2016)Google Scholar
  19. 19.
    Alavi, H.S., Dillenbourg, P.: An ambient awareness tool for supporting supervised collaborative problem solving. IEEE Trans. Learn. Technol. 5, 264–274 (2012). doi:10.1109/TLT.2012.7 CrossRefGoogle Scholar
  20. 20.
    Moraveji, N., Morris, M., Morris, D., et al.: ClassSearch: facilitating the development of web search skills through social learning. In: Proceedings of SIGCHI Conference on Human Factors Computing System, pp. 1797–1806 (2011)Google Scholar
  21. 21.
    Lamberty, K.K., Froiland, K., Biatek, J., Adams, S.: Encouraging awareness of peers’ learning activities using large displays in the periphery. In: Proceedings of 28th International Conference on Extended Abstracts on Human factors in Computing Systems - CHI EA 2010, pp. 3655–3660 (2010)Google Scholar
  22. 22.
    Sturm, J., Iqbal, R., Terken, J.: Development of peripheral feedback to support lectures. In: Renals, S., Bengio, S. (eds.) MLMI 2005. LNCS, vol. 3869, pp. 138–149. Springer, Heidelberg (2006). doi:10.1007/11677482_12 CrossRefGoogle Scholar
  23. 23.
    Hausen, D., Boring, S., Greenberg, S.: The unadorned desk: exploiting the physical space around a display as an input canvas. In: Kotzé, P., Marsden, G., Lindgaard, G., Wesson, J., Winckler, M. (eds.) INTERACT 2013. LNCS, vol. 8117, pp. 140–158. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40483-2_10 CrossRefGoogle Scholar
  24. 24.
    Probst, K., Lindlbauer, D., Haller, M.: A chair as ubiquitous input device: exploring semaphoric chair gestures for focused and peripheral interaction. In: CHI 2014 Proceedings of 32nd International Conference on Human Factors Computing Systems, pp. 4097–4106 (2014)Google Scholar
  25. 25.
    Bakker, S., van den Hoven, E., Eggen, B., Overbeeke, K.: Exploring peripheral interaction design for primary school teachers. In: Proceedings of Sixth International Conference on Tangible, Embed Embodied Interact - TEI 2012 1:245–252 (2012). doi:10.1145/2148131.2148184
  26. 26.
    Bakker, S.: Design for peripheral interaction (2013). doi:10.6100/IR754544
  27. 27.
    Sulaiman, T., Hassan, A., Yi, H.Y.: An analysis of teaching styles in primary and secondary school teachers based on the theory of multiple intelligences. J. Soc. Sci. 7, 428–435 (2011)CrossRefGoogle Scholar
  28. 28.
    Velloso, E., Schmidt, D., Alexander, J., et al.: The feet in human-computer interaction. ACM Comput. Surv. 48, 1–35 (2015). doi:10.1145/2816455 CrossRefGoogle Scholar
  29. 29.
    Alexander, J., Han, T., Judd, W., et al.: Putting your best foot forward: investigating real-world mappings for foot-based gestures. In: Proceedings of 30th International Conference on Human factors Computing System (CHI 2012), pp. 1229–1238 (2012)Google Scholar
  30. 30.
    Daiber, F., Schöning, J., Krüger, A.: Whole body interaction with geospatial data. In: Butz, A., Fisher, B., Christie, M., Krüger, A., Olivier, P., Therón, R. (eds.) SG 2009. LNCS, vol. 5531, pp. 81–92. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02115-2_7 CrossRefGoogle Scholar
  31. 31.
    Probst, K.: Peripheral interaction in desktop computing: why it’s worth stepping beyond traditional mouse and keyboard. In: Bakker, S., Hausen, D., Selker, T. (eds.) Peripheral Interaction. HIS, pp. 183–205. Springer, Cham (2016). doi:10.1007/978-3-319-29523-7_9 CrossRefGoogle Scholar
  32. 32.
    Bakker, S., van den Hoven, E., Eggen, B.: Acting by hand: Informing interaction design for the periphery of people’s attention. Interact. Comput. 24, 119–130 (2012). doi:10.1016/j.intcom.2012.04.001 CrossRefGoogle Scholar
  33. 33.
    Wickens, C.D.: Multiple resources and performance prediction. Theor. Issues Ergon. Sci. 3, 159–177 (2002). doi:10.1080/14639220210123806 CrossRefGoogle Scholar
  34. 34.
    Wood, W., Quinn, J.M., Kashy, D.A.: Habits in everyday life: thought, emotion, and action. J. Pers. Soc. Psychol. 83, 1281–1297 (2002). doi:10.1037/0022-3514.83.6.1281 CrossRefGoogle Scholar
  35. 35.
    Chaiken, S., Trope, Y.: Dual-process theories in social psychology. Guilford Press, New York City (1999)Google Scholar
  36. 36.
    Gardner, B., de Bruijn, G.-J., Lally, P.: A systematic review and meta-analysis of applications of the self-report habit index to nutrition and physical activity behaviours. Ann. Behav. Med. 42, 174–187 (2011). doi:10.1007/s12160-011-9282-0 CrossRefGoogle Scholar
  37. 37.
    De Bruijn, G.-J., Kremers, S.P.J., De Vet, E., et al.: Does habit strength moderate the intention–behaviour relationship in the theory of planned behaviour? The case of fruit consumption. Psychol. Health 22, 899–916 (2007). doi:10.1080/14768320601176113 CrossRefGoogle Scholar
  38. 38.
    Kremers, S.P., de Bruijn, G.-J., Visscher, T.L., et al.: Environmental influences on energy balance-related behaviors: A dual-process view. Int. J. Behav. Nutr. Phys. Act. 3, 9 (2006). doi:10.1186/1479-5868-3-9 CrossRefGoogle Scholar
  39. 39.
    Lally, P., van Jaarsveld, C.H.M., Potts, H.W.W., Wardle, J.: How are habits formed: modelling habit formation in the real world. Eur. J. Soc. Psychol. 40, 998–1009 (2010). doi:10.1002/ejsp.674 CrossRefGoogle Scholar
  40. 40.
    Bakker, S., van den Hoven, E., Eggen, B.: Peripheral interaction: characteristics and considerations. Pers. Ubiquitous Comput. 19, 239–254 (2014). doi:10.1007/s00779-014-0775-2 CrossRefGoogle Scholar
  41. 41.
    Manny-Ιkan, E., Dagan, O., Tikochinski, T.B., Zorman, R.: Using the interactive white board in teaching and learning – an evaluation of the SMART CLASSROOM pilot project. Interdiscip. J. E-Learn. Learn. Objects 7, 249–272 (2011)Google Scholar
  42. 42.
    Bannister, D.: Guidelines for Effective School/Classroom Use of Interactive Whiteboards. Brussels (2010)Google Scholar
  43. 43.
    Jang, S.J., Tsai, M.F.: Reasons for using or not using interactive whiteboards: perspectives of Taiwanese elementary mathematics and science teachers. Australas J. Educ. Technol. 28, 1451–1465 (2012)CrossRefGoogle Scholar
  44. 44.
    Wensveen, S.A.G., Djajadiningrat, J.P., Overbeeke, C.J.: Interaction frogger: a design framework to couple action and function through feedback and feedforward. In: DIS 2004 Proceedings of 5th Conference on Designing Interactive System Processing Practice methods, Techniques, pp. 177–184 (2004)Google Scholar
  45. 45.
    Zijlstra, F.R.: Efficiency in work behaviour: a design approach for modern tools. Delft Univ Press, pp. 1–186 (1993). ISBN 90-6275-918-1Google Scholar
  46. 46.
    Gardner, B., Abraham, C., Lally, P., de Bruijn, G.-J.: Towards parsimony in habit measurement: testing the convergent and predictive validity of an automaticity subscale of the self-report habit index. Int. J. Behav. Nutr. Phys. Act. 9, 102 (2012). doi:10.1186/1479-5868-9-102 CrossRefGoogle Scholar
  47. 47.
    Creswell, J.W.: Qualitative Inquiry and Research Design: Choosing Among Five Approaches. Sage Publications, Thousand Oaks (2007)Google Scholar
  48. 48.
    Starks, H., Trinidad, S.B.: Choose your method: a comparison of phenomenology, discourse analysis, and grounded theory. Qual. Health Res. 17, 1372–1380 (2007). doi:10.1177/1049732307307031 CrossRefGoogle Scholar
  49. 49.
    Anderson, E.H., Spencer, M.H.: Cognitive representations of AIDS: a phenomenological study. Qual. Health Res. 12, 1338–1352 (2002). doi:10.1177/1049732302238747 CrossRefGoogle Scholar
  50. 50.
    Ashbrook, D.L.: Enabling mobile microinteractions. Georgia Institute of Technology (2010)Google Scholar
  51. 51.
    Oulasvirta, A., Tamminen, S., Roto, V., Kuorelahti, J.: Interaction in 4-second bursts. In: Proceedings of SIGCHI Conference on Human factors Computing Systems - CHI 2005, p. 919, ACM Press, New York, USA (2005)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  1. 1.Department of Industrial DesignEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations