Night Mode, Dark Thoughts: Background Color Influences the Perceived Sentiment of Chat Messages

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10514)


The discussion of color in HCI often remains restricted to issues of legibility, aesthetics or color preferences. Little attention has been given to the emotional and semantic effects of color on digital content. At the example of black and white, this paper reviews previous studies in psychology and reports an experiment that investigates the influence of black, white and gray user interface backgrounds on the perception of sentiment in chat messages on a social media platform ( Of sixty-seven participants, those who rated the messages against a black background perceived them more negatively than those who worked against a white background. The results suggest that user sentiment perception can be influenced by interface color, especially for ambiguous textual content laced with irony and sarcasm. We claim that this knowledge can be applied in persuasive interaction and user experience design across the entirety of the digital landscape.


Color Affective bias Sentiment analysis User interface design Online chat Embodiment Conceptual metaphor theory Persuasive computing 


  1. 1.
    Adams, F.M., Osgood, C.E.: A cross-cultural study of the affective meanings of color. J. Cross Cult. Psychol. 4(2), 135–156 (1973)CrossRefGoogle Scholar
  2. 2.
    Allagui, A., Lemoine, J.: Web interface and consumers’ buying intention in e-tailing: results from an online experiment. Adv. Consum. Res. 8, 24–30 (2006)Google Scholar
  3. 3.
    Baldauf, C.: Metapher und Kognition. Grundlagen einer neuen Theorie der Alltagsmetapher. Peter Lang Verlag, Bern (1997)Google Scholar
  4. 4.
    Bauer, D., Cavonius, C.: Improving the legibility of visual display units through contrast reversal. In: Ergonomic Aspects of Visual Display Terminals, pp. 137–142 (1980)Google Scholar
  5. 5.
    Berlin, B., Kay, P.: Basic Color Terms: Their Universality and Evolution. The David Human Series Philosophy and Cognitive Science Reissues, vol. 19, p. 178 (1969)Google Scholar
  6. 6.
    Bishop, J.: Representations of “trolls” in mass media communication: a review of media-texts and moral panics relating to “internet trolling.” Int. J. Web Based Communities 10(1), 7 (2014)Google Scholar
  7. 7.
    Cambria, E., et al.: Computational intelligence for big social data analysis [guest editorial]. IEEE Comput. Intell. Mag. 11(3), 8–9 (2016)CrossRefGoogle Scholar
  8. 8.
    Cambria, E., et al.: New avenues in knowledge bases for natural language processing. Knowl.-Based Syst. 108(C), 1–4 (2016)CrossRefGoogle Scholar
  9. 9.
    Chang, A.-M., et al.: Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness. Proc. Nat. Acad. Sci. 112(4), 201418490 (2014)Google Scholar
  10. 10.
    Cheng, Z.: Effect of font and background color combination on the recognition efficiency for LCD displays. ProQuest Dissertations and Theses, p. 40, May 2015Google Scholar
  11. 11.
    Chiou, W.-B., Cheng, Y.-Y.: In broad daylight, we trust in God! Brightness, the salience of morality, and ethical behavior. J. Environ. Psychol. 36, 37–42 (2013)CrossRefGoogle Scholar
  12. 12.
    Chondro, P., Ruan, S.-J.: Perceptually hue-oriented power-saving scheme with overexposure corrector for AMOLED displays. J. Disp. Technol. 12(8), 791–800 (2016)CrossRefGoogle Scholar
  13. 13.
    Cohen, J.: Statistical Power Analysis for the Behavioural Sciences. Lawrence Earlbaum Associates, Hillside (1988)zbMATHGoogle Scholar
  14. 14.
    Desmet, P.: Designing emotion (2002)Google Scholar
  15. 15.
    Desmet, P.M., Hekkert, P.: The basis of product emotions. In: Pleasure With Products: Beyond Usability (2002)Google Scholar
  16. 16.
    Elliot, A.J., Maier, M.A.: Color psychology: effects of perceiving color on psychological functioning in humans. Annu. Rev. Psychol. 65, 95–120 (2014)CrossRefGoogle Scholar
  17. 17.
    Farrington, D.P., Welsh, B.C.: Effects of improved street lighting on crime: a systematic review. Campbell Syst. Rev. 13, 59 (2008)Google Scholar
  18. 18.
    Faul, F., et al.: G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39(2), 175–191 (2007)CrossRefGoogle Scholar
  19. 19.
    Frank, M.G., Gilovich, T.: The dark side of self-perception and social-perception - black uniforms and aggression in professional sports. J. Pers. Soc. Psychol. 54(1), 74–85 (1988)CrossRefGoogle Scholar
  20. 20.
    Garcia-Marques, T., Mackie, D.M.: The positive feeling of familiarity: mood as an information processing regulation mechanism. Psychology Press (2000)Google Scholar
  21. 21.
    Gil, S., Le Bigot, L.: Seeing life through positive-tinted glasses: color-meaning associations. PLoS ONE 9(8), e104291 (2014)CrossRefGoogle Scholar
  22. 22.
    Godbole, N., Srinivasaiah, M.: Large-scale sentiment analysis for news and blogs. In: Conference on Weblogs and Social Media (ICWSM 2007), pp. 219–222 (2007)Google Scholar
  23. 23.
    Greitemeyer, T., et al.: Playing prosocial video games increases empathy and decreases schadenfreude. Emotion 10(6), 796–802 (2010). Washington, D.C.CrossRefGoogle Scholar
  24. 24.
    Hawlitschek, F., et al.: Colors and trust: the influence of user interface design on trust and reciprocity. In: Proceedings of the Annual Hawaii International Conference on System Sciences, pp. 590–599 (2016)Google Scholar
  25. 25.
    Ho, H., et al.: Combining colour and temperature: a blue object is more likely to be judged as warm than a red object. Sci. Rep. 4, 5527 (2014)CrossRefGoogle Scholar
  26. 26.
    Johns, M.: A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep 14(6), 540–545 (1991)CrossRefGoogle Scholar
  27. 27.
    Klein, G.S.: Semantic power measured through the interference of words with color-naming. Am. J. Psychol. 77(4), 576–588 (1964)CrossRefGoogle Scholar
  28. 28.
    Kouloumpis, E., et al.: Twitter sentiment analysis: the good the bad and the OMG! Artif. Intell. 11(164), 538–541 (2011)Google Scholar
  29. 29.
    Kwallek, N., et al.: Impact of three interior color schemes on worker mood and performance relative to individual environmental sensitivity. Color Res. Appl. 22(2), 121–132 (1997)CrossRefGoogle Scholar
  30. 30.
    Labrecque, L.I., et al.: The marketers’ prismatic palette: a review of color research and future directions. Psychol. Mark. 30(2), 187–202 (2010)CrossRefGoogle Scholar
  31. 31.
    Lakens, D., et al.: Brightness differences influence the evaluation of affective pictures. Cogn. Emot. 27(7), 1225–1246 (2013)CrossRefGoogle Scholar
  32. 32.
    Lakens, D., et al.: But for the bad, there would not be good: grounding valence in brightness through shared relational structures. J. Exp. Psychol. Gen. 141(3), 584–594 (2012)CrossRefGoogle Scholar
  33. 33.
    Lakoff, G., Johnson, M.: Metaphors We Live By. University of Chicago Press, Chicago (1997)Google Scholar
  34. 34.
    Lakoff, G., Johnson, M.: Philosophy in the Flesh: The Embodied Mind and Its Challenge to Western Thought. Basic Books, New York (1999)Google Scholar
  35. 35.
    Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical data. Biometrics 33(1), 159–174 (1977)CrossRefzbMATHGoogle Scholar
  36. 36.
    Löffler, D.: Color, Metaphor and Culture. Ph.D. dissertation, University of Würzburg, Würzburg (2017)Google Scholar
  37. 37.
    MacDonald, L.W.: Using color effectively in computer graphics. IEEE Comput. Graphics Appl. 19(4), 20–35 (1999)CrossRefGoogle Scholar
  38. 38.
    Meier, B.P., et al.: Black and white as valence cues: a large-scale replication effort of Meier, Robinson, and Clore (2004, 2015)Google Scholar
  39. 39.
    Meier, B.P., et al.: When “Light” and “Dark” thoughts become light and dark responses: affect biases brightness judgments. Emotion 7(2), 366–376 (2007)CrossRefGoogle Scholar
  40. 40.
    Pelet, J.-É., Papadopoulou, P.: The effect of colors of e-commerce websites on consumer mood, memorization and buying intention. Eur. J. Inf. Syst. 21(4), 438–467 (2012)CrossRefGoogle Scholar
  41. 41.
    Reber, R., et al.: Effects of perceptual fluency on affective judgments. Psychol. Sci. 9(1), 45–48 (1998)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Sánchez, J.A., et al.: Conveying mood and emotion in instant messaging by using a two-dimensional model for affective states. In: Proceedings of VII Brazilian Symposium on Human Factors in Computing Systems, IHC 2006, p. 66. ACM Press, New York (2006)Google Scholar
  43. 43.
    Dos Santos, M., et al.: Method of dynamically evaluating the mood of an instant messaging user (2008)Google Scholar
  44. 44.
    Schwarz, N.: Feelings-as-information theory. In: Van Lange, P.A.M., Kruglanski, A., Higgins, E.T. (eds.) Handbook of Theories of Social Psychology: Collection, vol. 1 and 2, pp. 289–308. Sage, Thousand Oaks (2011)Google Scholar
  45. 45.
    Smith, R.H., et al.: Envy and schadenfreude. Pers. Soc. Psychol. Bull. 22(2), 158–168 (1996)CrossRefGoogle Scholar
  46. 46.
    Stroop, J.R.: Studies of interference in serial verbal reactions. J. Exp. Psychol. 18(6), 643–662 (1935)CrossRefGoogle Scholar
  47. 47.
    Zangerle, E., et al.: SentiStorm: Echtzeit-Stimmungserkennung von Tweets. HMD Praxis der Wirtschaftsinformatik 53(4), 514–529 (2016)CrossRefGoogle Scholar
  48. 48.
    Zarkadi, T., Schnall, S.: “Black and White” thinking: visual contrast polarizes moral judgment. J. Exp. Soc. Psychol. 49(3), 355–359 (2013)CrossRefGoogle Scholar
  49. 49.
    Zhong, C.-B., et al.: Good lamps are the best police: darkness increases dishonesty and self-interested behavior. Psychol. Sci. 21(3), 311–314 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  1. 1.University of WürzburgWürzburgGermany

Personalised recommendations